IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i8p1089-1108.html
   My bibliography  Save this article

Climate impact potential of utilizing forest residues for bioenergy in Norway

Author

Listed:
  • Geoffrey Guest
  • Francesco Cherubini
  • Anders Strømman

Abstract

The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Geoffrey Guest & Francesco Cherubini & Anders Strømman, 2013. "Climate impact potential of utilizing forest residues for bioenergy in Norway," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1089-1108, December.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:8:p:1089-1108
    DOI: 10.1007/s11027-012-9409-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9409-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-012-9409-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joelsson, Anna & Gustavsson, Leif, 2009. "District heating and energy efficiency in detached houses of differing size and construction," Applied Energy, Elsevier, vol. 86(2), pages 126-134, February.
    2. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
    3. Boucher, O. & Reddy, M.S., 2008. "Climate trade-off between black carbon and carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(1), pages 193-200, January.
    4. Tuomi, Mikko & Vanhala, Pekka & Karhu, Kristiina & Fritze, Hannu & Liski, Jari, 2008. "Heterotrophic soil respiration—Comparison of different models describing its temperature dependence," Ecological Modelling, Elsevier, vol. 211(1), pages 182-190.
    5. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pelletier, Chloé & Rogaume, Yann & Dieckhoff, Léa & Bardeau, Guillaume & Pons, Marie-Noëlle & Dufour, Anthony, 2019. "Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains," Applied Energy, Elsevier, vol. 235(C), pages 1381-1388.
    2. Agar, D. & Gil, J. & Sanchez, D. & Echeverria, I. & Wihersaari, M., 2015. "Torrefied versus conventional pellet production – A comparative study on energy and emission balance based on pilot-plant data and EU sustainability criteria," Applied Energy, Elsevier, vol. 138(C), pages 621-630.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    2. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    3. Tuomi, M. & Laiho, R. & Repo, A. & Liski, J., 2011. "Wood decomposition model for boreal forests," Ecological Modelling, Elsevier, vol. 222(3), pages 709-718.
    4. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Minimum-cost district heat production systems of different sizes under different environmental and social cost scenarios," Applied Energy, Elsevier, vol. 136(C), pages 881-893.
    5. Yousefpour, Rasoul & You, Bin & Hanewinkel, Marc, 2019. "Simulation of extreme storm effects on regional forest soil carbon stock," Ecological Modelling, Elsevier, vol. 399(C), pages 39-53.
    6. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    7. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    8. Odette Deuber & Gunnar Luderer & Robert Sausen, 2014. "CO 2 equivalences for short-lived climate forcers," Climatic Change, Springer, vol. 122(4), pages 651-664, February.
    9. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    12. Ziębik, Andrzej & Malik, Tomasz & Liszka, Marcin, 2015. "Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification," Energy, Elsevier, vol. 92(P2), pages 179-188.
    13. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    14. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    15. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    16. Augusto Mussi Alvim & Eduardo Rodrigues Sanguinet, 2021. "Climate Change Policies and the Carbon Tax Effect on Meat and Dairy Industries in Brazil," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    17. Moura, Maria Cecilia P. & Branco, David A. Castelo & Peters, Glen P. & Szklo, Alexandre Salem & Schaeffer, Roberto, 2013. "How the choice of multi-gas equivalency metrics affects mitigation options: The case of CO2 capture in a Brazilian coal-fired power plant," Energy Policy, Elsevier, vol. 61(C), pages 1357-1366.
    18. José-Luis Cruz & Esteban Rossi-Hansberg, 2024. "The Economic Geography of Global Warming," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 899-939.
    19. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    20. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:8:p:1089-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.