IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i6d10.1007_s10951-019-00612-y.html
   My bibliography  Save this article

Flowshop scheduling with learning effect and job rejection

Author

Listed:
  • Baruch Mor

    (Ariel University)

  • Gur Mosheiov

    (The Hebrew University)

  • Dana Shapira

    (Ariel University)

Abstract

We study scheduling problems on a proportionate flowshop. Three objective functions are considered: minimum makespan, minimum total completion time, and minimum total load. We consider a learning process; thus, the processing time of a job processed later in sequence is reduced. The scheduler has the option of job rejection; i.e., only a subset of the jobs are processed and the rejected jobs are penalized. An upper bound on the total permitted rejection cost is assumed. Since the single-machine versions of these problems were shown to be NP-hard, we focus on the introduction of pseudopolynomial dynamic programming algorithms, indicating that the problems are NP-hard in the ordinary sense. We provide an extensive numerical study verifying that the proposed solution algorithms are very efficient and instances containing up to 80 jobs are solved in no more than 5 ms.

Suggested Citation

  • Baruch Mor & Gur Mosheiov & Dana Shapira, 2020. "Flowshop scheduling with learning effect and job rejection," Journal of Scheduling, Springer, vol. 23(6), pages 631-641, December.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:6:d:10.1007_s10951-019-00612-y
    DOI: 10.1007/s10951-019-00612-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00612-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00612-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosheiov, Gur, 2001. "Scheduling problems with a learning effect," European Journal of Operational Research, Elsevier, vol. 132(3), pages 687-693, August.
    2. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    3. Ameni Azzouz & Meriem Ennigrou & Lamjed Ben Said, 2018. "Scheduling problems under learning effects: classification and cartography," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1642-1661, February.
    4. Gur Mosheiov & Vitaly A. Strusevich, 2017. "Determining optimal sizes of bounded batches with rejection via quadratic minā€cost flow," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 217-224, April.
    5. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    6. Ou, Jinwen & Zhong, Xueling & Wang, Guoqing, 2015. "An improved heuristic for parallel machine scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 241(3), pages 653-661.
    7. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    8. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    9. Enrique Gerstl & Gur Mosheiov, 2017. "Single machine scheduling problems with generalised due-dates and job-rejection," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3164-3172, June.
    10. Xueling Zhong & Zhangming Pan & Dakui Jiang, 2017. "Scheduling with release times and rejection on two parallel machines," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 934-944, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    2. Lingfa Lu & Liqi Zhang, 2023. "Scheduling problems with rejection to minimize the k-th power of the makespan plus the total rejection cost," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-17, August.
    3. Baruch Mor & Gur Mosheiov, 2022. "Single machine scheduling to maximize the weighted number of on-time jobs with job-rejection," Operational Research, Springer, vol. 22(3), pages 2707-2719, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baruch Mor & Gur Mosheiov, 2021. "A note: flowshop scheduling with linear deterioration and job-rejection," 4OR, Springer, vol. 19(1), pages 103-111, March.
    2. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    3. Baruch Mor & Gur Mosheiov & Dana Shapira, 2021. "Single machine lot scheduling with optional job-rejection," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 1-11, January.
    4. Baruch Mor, 2019. "Minmax scheduling problems with common due-date and completion time penalty," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 50-71, July.
    5. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    6. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    7. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    8. Zong-Jun Wei & Li-Yan Wang & Lei Zhang & Ji-Bo Wang & Ershen Wang, 2023. "Single-Machine Maintenance Activity Scheduling with Convex Resource Constraints and Learning Effects," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    9. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    10. Koulamas, Christos & Gupta, Sushil & Kyparisis, George J., 2010. "A unified analysis for the single-machine scheduling problem with controllable and non-controllable variable job processing times," European Journal of Operational Research, Elsevier, vol. 205(2), pages 479-482, September.
    11. Qian, Jin & Lin, Hexiang & Kong, Yufeng & Wang, Yuansong, 2020. "Tri-criteria single machine scheduling model with release times and learning factor," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    12. Mina Roohnavazfar & Daniele Manerba & Lohic Fotio Tiotsop & Seyed Hamid Reza Pasandideh & Roberto Tadei, 2021. "Stochastic single machine scheduling problem as a multi-stage dynamic random decision process," Computational Management Science, Springer, vol. 18(3), pages 267-297, July.
    13. Zhang Xingong & Wang Yong & Bai Shikun, 2016. "Single-machine group scheduling problems with deteriorating and learning effect," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2402-2410, July.
    14. W-H Kuo & D-L Yang, 2011. "A note on due-date assignment and single-machine scheduling with deteriorating jobs and learning effects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 206-210, January.
    15. Rustogi, Kabir & Strusevich, Vitaly A., 2012. "Single machine scheduling with general positional deterioration and rate-modifying maintenance," Omega, Elsevier, vol. 40(6), pages 791-804.
    16. Koulamas, Christos, 2011. "A unified solution approach for the due date assignment problem with tardy jobs," International Journal of Production Economics, Elsevier, vol. 132(2), pages 292-295, August.
    17. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    18. Kai-biao Sun & Hong-xing Li, 2009. "Some single-machine scheduling problems with actual time and position dependent learning effects," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 161-177, June.
    19. Qian, Jianbo & Steiner, George, 2013. "Fast algorithms for scheduling with learning effects and time-dependent processing times on a single machine," European Journal of Operational Research, Elsevier, vol. 225(3), pages 547-551.
    20. Shang-Chia Liu, 2015. "Common Due-Window Assignment and Group Scheduling with Position-Dependent Processing Times," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:6:d:10.1007_s10951-019-00612-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.