IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02706-4.html
   My bibliography  Save this article

Nash Equilibria in Traffic Networks with Multiple Populations and Origins–Destinations

Author

Listed:
  • Rinaldo M. Colombo

    (University of Brescia)

  • Luca Giuzzi

    (University of Brescia)

  • Francesca Marcellini

    (University of Brescia)

Abstract

Different populations of vehicles travel along a network. Each population has its origin, destination and travel costs — which may well be unbounded. Under the only requirement of the continuity of the travel costs, we prove the existence of a Nash equilibrium for all populations. Conditions for its uniqueness are also provided. A few cases are treated in detail to show specific situations of interest.

Suggested Citation

  • Rinaldo M. Colombo & Luca Giuzzi & Francesca Marcellini, 2025. "Nash Equilibria in Traffic Networks with Multiple Populations and Origins–Destinations," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-26, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02706-4
    DOI: 10.1007/s10957-025-02706-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02706-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02706-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rinaldo M. Colombo & Helge Holden, 2016. "On the Braess Paradox with Nonlinear Dynamics and Control Theory," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 216-230, January.
    2. Anna Nagurney & David Parkes & Patrizia Daniele, 2007. "The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox," Computational Management Science, Springer, vol. 4(4), pages 355-375, October.
    3. Hubert Asienkiewicz & Łukasz Balbus, 2019. "Existence of Nash equilibria in stochastic games of resource extraction with risk-sensitive players," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 502-518, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Nagurney & Qiang Qiang, 2008. "An efficiency measure for dynamic networks modeled as evolutionary variational inequalities with application to the Internet and vulnerability analysis," Netnomics, Springer, vol. 9(1), pages 1-20, January.
    2. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    3. Toyasaki, Fuminori & Daniele, Patrizia & Wakolbinger, Tina, 2014. "A variational inequality formulation of equilibrium models for end-of-life products with nonlinear constraints," European Journal of Operational Research, Elsevier, vol. 236(1), pages 340-350.
    4. Patrizia Daniele & Sofia Giuffrè, 2015. "Random Variational Inequalities and the Random Traffic Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 363-381, October.
    5. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
    6. Qingda Wei & Xian Chen, 2021. "Nonzero-sum Risk-Sensitive Average Stochastic Games: The Case of Unbounded Costs," Dynamic Games and Applications, Springer, vol. 11(4), pages 835-862, December.
    7. Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2024. "Strong Convergent Inertial Two-subgradient Extragradient Method for Finding Minimum-norm Solutions of Variational Inequality Problems," Networks and Spatial Economics, Springer, vol. 24(2), pages 425-459, June.
    8. D. Aussel & J. Cotrina, 2013. "Quasimonotone Quasivariational Inequalities: Existence Results and Applications," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 637-652, September.
    9. Laura Scrimali, 2008. "The financial equilibrium problem with implicit budget constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 191-203, June.
    10. Qiang, Patrick & Nagurney, Anna, 2012. "A bi-criteria indicator to assess supply chain network performance for critical needs under capacity and demand disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 801-812.
    11. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    12. Sun, Li & Liu, Like & Xu, Zhongzhi & Jie, Yang & Wei, Dong & Wang, Pu, 2015. "Locating inefficient links in a large-scale transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 537-545.
    13. Adriano Festa & Paola Goatin & Fabio Vicini, 2023. "Navigation System-Based Routing Strategies in Traffic Flows on Networks," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 930-957, September.
    14. Elena Parilina & Stepan Akimochkin, 2021. "Cooperative Stochastic Games with Mean-Variance Preferences," Mathematics, MDPI, vol. 9(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02706-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.