IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i1d10.1007_s10957-025-02619-2.html
   My bibliography  Save this article

Random Descent Steps in a Probability Maximization Scheme

Author

Listed:
  • Edit Csizmás

    (John von Neumann University)

  • Rajmund Drenyovszki

    (John von Neumann University)

  • Tamás Szántai

    (Budapest University of Technology and Economics)

  • Csaba I. Fábián

    (John von Neumann University)

Abstract

Gradient computation of multivariate distribution functions calls for considerable effort. Hence coordinate descent and derivative-free approaches are attractive. This paper deals with constrained convex problems. We perform random descent steps in an approximation scheme that is an inexact cutting-plane method from a dual viewpoint. We prove that the scheme converges and present a computational study comparing different descent methods applied in the approximation scheme.

Suggested Citation

  • Edit Csizmás & Rajmund Drenyovszki & Tamás Szántai & Csaba I. Fábián, 2025. "Random Descent Steps in a Probability Maximization Scheme," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-26, April.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:1:d:10.1007_s10957-025-02619-2
    DOI: 10.1007/s10957-025-02619-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02619-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02619-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    2. Darinka Dentcheva & Bogumila Lai & Andrzej Ruszczyński, 2004. "Dual methods for probabilistic optimization problems ," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 331-346, October.
    3. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. C. van de Panne & W. Popp, 1963. "Minimum-Cost Cattle Feed Under Probabilistic Protein Constraints," Management Science, INFORMS, vol. 9(3), pages 405-430, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    2. Torres-Rojo, J. M., 2001. "Risk management in the design of a feeding ration: a portfolio theory approach," Agricultural Systems, Elsevier, vol. 68(1), pages 1-20, April.
    3. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    4. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    5. Zare M., Yahia & Daneshmand, Ahmad, 1995. "A linear approximation method for solving a special class of the chance constrained programming problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 213-225, January.
    6. Csaba I. Fábián, 2021. "Gaining traction: on the convergence of an inner approximation scheme for probability maximization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 491-519, June.
    7. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Lebeau, Alexis & Petitet, Marie & Quemin, Simon & Saguan, Marcelo, 2024. "Long-term issues with the Energy-Only Market design in the context of deep decarbonization," Energy Economics, Elsevier, vol. 132(C).
    9. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    10. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    11. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    12. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    13. Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2023. "Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming," Other publications TiSEM 88512ac0-c26a-4a99-b840-3, Tilburg University, School of Economics and Management.
    14. Johnson, Michael E. & Williams, Angelica & Valdes, Constanza & Ajewole, Kayode & Beckman, Jayson, 2025. "Demand for Alternative Feed Grains for Broiler Production in an Era of Global Price Uncertainty: The Case of Sorghum," Economic Research Report 356238, United States Department of Agriculture, Economic Research Service.
    15. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    16. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    17. Aray Almen & Darinka Dentcheva, 2024. "On Risk Evaluation and Control of Distributed Multi-agent Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2025-2054, November.
    18. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    19. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    20. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:1:d:10.1007_s10957-025-02619-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.