IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v148y2011i2d10.1007_s10957-010-9754-6.html
   My bibliography  Save this article

A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality

Author

Listed:
  • M. C. Campi

    (Università di Brescia)

  • S. Garatti

    (Politecnico di Milano)

Abstract

In this paper, we study the link between a Chance-Constrained optimization Problem (CCP) and its sample counterpart (SP). SP has a finite number, say N, of sampled constraints. Further, some of these sampled constraints, say k, are discarded, and the final solution is indicated by $x^{\ast}_{N,k}$ . Extending previous results on the feasibility of sample convex optimization programs, we establish the feasibility of $x^{\ast}_{N,k}$ for the initial CCP problem. Constraints removal allows one to improve the cost function at the price of a decreased feasibility. The cost improvement can be inspected directly from the optimization result, while the theory here developed permits to keep control on the other side of the coin, the feasibility of the obtained solution. In this way, trading feasibility for performance is put on solid mathematical grounds in this paper. The feasibility result here obtained applies to a vast class of chance-constrained optimization problems, and has the distinctive feature that it holds true irrespective of the algorithm used to discard k constraints in the SP problem. For constraints discarding, one can thus, e.g., resort to one of the many methods introduced in the literature to solve chance-constrained problems with discrete distribution, or even use a greedy algorithm, which is computationally very low-demanding, and the feasibility result remains intact. We further prove that, if constraints in the SP problem are optimally removed—i.e., one deletes those constraints leading to the largest possible cost improvement—, then a precise optimality link to the original chance-constrained problem CCP in addition holds.

Suggested Citation

  • M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
  • Handle: RePEc:spr:joptap:v:148:y:2011:i:2:d:10.1007_s10957-010-9754-6
    DOI: 10.1007/s10957-010-9754-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9754-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9754-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    3. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    4. Darinka Dentcheva & Bogumila Lai & Andrzej Ruszczyński, 2004. "Dual methods for probabilistic optimization problems ," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 331-346, October.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Lingzi Jin & Xiao Wang, 2022. "A stochastic primal-dual method for a class of nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 143-180, September.
    3. Xun Shen & Satoshi Ito, 2024. "Approximate Methods for Solving Chance-Constrained Linear Programs in Probability Measure Space," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 150-177, January.
    4. Wei, Shaoyuan & Murgovski, Nikolce & Jiang, Jiuchun & Hu, Xiaosong & Zhang, Weige & Zhang, Caiping, 2020. "Stochastic optimization of a stationary energy storage system for a catenary-free tramline," Applied Energy, Elsevier, vol. 280(C).
    5. Ritter, Andreas & Widmer, Fabio & Duhr, Pol & Onder, Christopher H., 2022. "Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization," Applied Energy, Elsevier, vol. 322(C).
    6. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    8. Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.
    9. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    10. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    11. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    12. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    13. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    14. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    15. Rocchetta, Roberto & Crespo, Luis G. & Kenny, Sean P., 2020. "A scenario optimization approach to reliability-based design," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Ramponi, Federico Alessandro & Campi, Marco C., 2018. "Expected shortfall: Heuristics and certificates," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1003-1013.
    17. Ashley M. Hou & Line A. Roald, 2022. "Data-driven tuning for chance constrained optimization: analysis and extensions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 649-682, October.
    18. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    5. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    6. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    7. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    8. Feng Shan & Liwei Zhang & Xiantao Xiao, 2014. "A Smoothing Function Approach to Joint Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 181-199, October.
    9. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    10. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    11. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    12. İhsan Yanıkoğlu & Dick den Hertog, 2013. "Safe Approximations of Ambiguous Chance Constraints Using Historical Data," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 666-681, November.
    13. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    14. Aouam, Tarik & Brahimi, Nadjib, 2013. "Integrated production planning and order acceptance under uncertainty: A robust optimization approach," European Journal of Operational Research, Elsevier, vol. 228(3), pages 504-515.
    15. Yuichi Takano & Jun-ya Gotoh, 2010. "α-Conservative approximation for probabilistically constrained convex programs," Computational Optimization and Applications, Springer, vol. 46(1), pages 113-133, May.
    16. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    17. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    18. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    19. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    20. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:148:y:2011:i:2:d:10.1007_s10957-010-9754-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.