IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v60y2004i2p331-346.html
   My bibliography  Save this article

Dual methods for probabilistic optimization problems

Author

Listed:
  • Darinka Dentcheva
  • Bogumila Lai
  • Andrzej Ruszczyński

Abstract

We consider nonlinear stochastic optimization problems with probabilistic constraints. The concept of a p-efficient point of a probability distribution is used to derive equivalent problem formulations, and necessary and sufficient optimality conditions. We analyze the dual functional and its subdifferential. Two numerical methods are developed based on approximations of the p-efficient frontier. The algorithms yield an optimal solution for problems involving r-concave probability distributions. For arbitrary distributions, the algorithms provide upper and lower bounds for the optimal value and nearly optimal solutions. The operation of the methods is illustrated on a cash matching problem with a probabilistic liquidity constraint. Copyright Springer-Verlag 2004

Suggested Citation

  • Darinka Dentcheva & Bogumila Lai & Andrzej Ruszczyński, 2004. "Dual methods for probabilistic optimization problems ," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 331-346, October.
  • Handle: RePEc:spr:mathme:v:60:y:2004:i:2:p:331-346
    DOI: 10.1007/s001860400371
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860400371
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860400371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    2. Darinka Dentcheva & Gabriela Martinez, 2012. "Augmented Lagrangian method for probabilistic optimization," Annals of Operations Research, Springer, vol. 200(1), pages 109-130, November.
    3. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    4. Aray Almen & Darinka Dentcheva, 2024. "On Risk Evaluation and Control of Distributed Multi-agent Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2025-2054, November.
    5. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    6. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    7. Feng Shan & Liwei Zhang & Xiantao Xiao, 2014. "A Smoothing Function Approach to Joint Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 181-199, October.
    8. Csaba I. Fábián, 2021. "Gaining traction: on the convergence of an inner approximation scheme for probability maximization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 491-519, June.
    9. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    10. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    11. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:60:y:2004:i:2:p:331-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.