IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i3d10.1007_s10957-024-02570-8.html
   My bibliography  Save this article

Efficient Approximation Quality Computation for Sandwiching Algorithms for Convex Multicriteria Optimization

Author

Listed:
  • Ina Lammel

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

  • Karl-Heinz Küfer

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

  • Philipp Süss

    (Fraunhofer Institute for Industrial Mathematics (ITWM))

Abstract

Computing the approximation quality is a crucial step in every iteration of sandwiching algorithms (also called Benson-type algorithms) used for the approximation of convex Pareto fronts, sets or functions. Two quality indicators often used in these algorithms are polyhedral gauge and epsilon indicator. In this article, we develop an algorithm to compute the polyhedral gauge and epsilon indicator approximation quality more efficiently. We derive criteria that assess whether the distance between a vertex of the outer approximation and the inner approximation needs to be recalculated. We interpret these criteria geometrically and compare them to a criterion developed by Dörfler et al. for a different quality indicator using convex optimization theory. For the bi-criteria case, we show that only two linear programs need to be solved in each iteration. We show that for more than two objectives, no constant bound on the number of linear programs to be checked can be derived. Numerical examples illustrate that incorporating the developed criteria into the sandwiching algorithm leads to a reduction in the approximation time of up to 94 % and that the approximation time increases more slowly with the number of iterations and the number of objective space dimensions.

Suggested Citation

  • Ina Lammel & Karl-Heinz Küfer & Philipp Süss, 2025. "Efficient Approximation Quality Computation for Sandwiching Algorithms for Convex Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-21, March.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02570-8
    DOI: 10.1007/s10957-024-02570-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02570-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02570-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    2. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    3. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    4. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    5. Ina Lammel & Karl-Heinz Küfer & Philipp Süss, 2024. "An approximation algorithm for multiobjective mixed-integer convex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 321-350, August.
    6. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    7. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.
    2. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    3. Gabriela Kováčová & Firdevs Ulus, 2024. "Computing the recession cone of a convex upper image via convex projection," Journal of Global Optimization, Springer, vol. 89(4), pages 975-994, August.
    4. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    5. Ina Lammel & Karl-Heinz Küfer & Philipp Süss, 2024. "An approximation algorithm for multiobjective mixed-integer convex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 321-350, August.
    6. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    7. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    8. Zachary Feinstein & Birgit Rudloff, 2024. "Deep learning the efficient frontier of convex vector optimization problems," Journal of Global Optimization, Springer, vol. 90(2), pages 429-458, October.
    9. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    10. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    11. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    12. Lang, Magdalena A.K. & Cleophas, Catherine & Ehmke, Jan Fabian, 2021. "Multi-criteria decision making in dynamic slotting for attended home deliveries," Omega, Elsevier, vol. 102(C).
    13. Gabriela Kováčová & Birgit Rudloff, 2025. "Approximations of unbounded convex projections and unbounded convex sets," Journal of Global Optimization, Springer, vol. 91(4), pages 787-805, April.
    14. Gabriele Eichfelder & Julia Niebling & Stefan Rocktäschel, 2020. "An algorithmic approach to multiobjective optimization with decision uncertainty," Journal of Global Optimization, Springer, vol. 77(1), pages 3-25, May.
    15. Daniel Dörfler & Andreas Löhne, 2024. "Polyhedral Approximation of Spectrahedral Shadows via Homogenization," Journal of Optimization Theory and Applications, Springer, vol. 200(2), pages 874-890, February.
    16. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    17. Birgit Rudloff & Firdevs Ulus, 2019. "Certainty Equivalent and Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization," Papers 1904.09456, arXiv.org, revised Oct 2020.
    18. Wei-tian Wu & Xin-min Yang, 2024. "Reference-point-based branch and bound algorithm for multiobjective optimization," Journal of Global Optimization, Springer, vol. 88(4), pages 927-945, April.
    19. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    20. Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02570-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.