IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v72y2018i4d10.1007_s10898-018-0666-6.html
   My bibliography  Save this article

Tractability of convex vector optimization problems in the sense of polyhedral approximations

Author

Listed:
  • Firdevs Ulus

    (Bilkent University)

Abstract

There are different solution concepts for convex vector optimization problems (CVOPs) and a recent one, which is motivated from a set optimization point of view, consists of finitely many efficient solutions that generate polyhedral inner and outer approximations to the Pareto frontier. A CVOP with compact feasible region is known to be bounded and there exists a solution of this sense to it. However, it is not known if it is possible to generate polyhedral inner and outer approximations to the Pareto frontier of a CVOP if the feasible region is not compact. This study shows that not all CVOPs are tractable in that sense and gives a characterization of tractable problems in terms of the well known weighted sum scalarization problems.

Suggested Citation

  • Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
  • Handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0666-6
    DOI: 10.1007/s10898-018-0666-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0666-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0666-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    2. Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
    3. Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
    4. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
    2. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    3. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    2. Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    5. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    6. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    7. Gabriele Eichfelder & Julia Niebling & Stefan Rocktäschel, 2020. "An algorithmic approach to multiobjective optimization with decision uncertainty," Journal of Global Optimization, Springer, vol. 77(1), pages 3-25, May.
    8. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    9. Birgit Rudloff & Firdevs Ulus, 2019. "Certainty Equivalent and Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization," Papers 1904.09456, arXiv.org, revised Oct 2020.
    10. Soghra Nobakhtian & Narjes Shafiei, 2017. "A Benson type algorithm for nonconvex multiobjective programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 271-287, July.
    11. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
    12. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    13. Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
    14. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    15. Robert Bassett & Khoa Le, 2016. "Multistage Portfolio Optimization: A Duality Result in Conic Market Models," Papers 1601.00712, arXiv.org, revised Jan 2016.
    16. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    17. c{C}au{g}{i}n Ararat & Nurtai Meimanjan, 2019. "Computation of systemic risk measures: a mixed-integer programming approach," Papers 1903.08367, arXiv.org, revised Aug 2023.
    18. Zachary Feinstein & Birgit Rudloff, 2022. "Deep Learning the Efficient Frontier of Convex Vector Optimization Problems," Papers 2205.07077, arXiv.org, revised Sep 2023.
    19. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    20. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:72:y:2018:i:4:d:10.1007_s10898-018-0666-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.