IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i4d10.1007_s10898-023-01351-3.html
   My bibliography  Save this article

Computing the recession cone of a convex upper image via convex projection

Author

Listed:
  • Gabriela Kováčová

    (University of California)

  • Firdevs Ulus

    (Bilkent University)

Abstract

It is possible to solve unbounded convex vector optimization problems (CVOPs) in two phases: (1) computing or approximating the recession cone of the upper image and (2) solving the equivalent bounded CVOP where the ordering cone is extended based on the first phase. In this paper, we consider unbounded CVOPs and propose an alternative solution methodology to compute or approximate the recession cone of the upper image. In particular, we relate the dual of the recession cone with the Lagrange dual of weighted sum scalarization problems whenever the dual problem can be written explicitly. Computing this set requires solving a convex (or polyhedral) projection problem. We show that this methodology can be applied to semidefinite, quadratic, and linear vector optimization problems and provide some numerical examples.

Suggested Citation

  • Gabriela Kováčová & Firdevs Ulus, 2024. "Computing the recession cone of a convex upper image via convex projection," Journal of Global Optimization, Springer, vol. 89(4), pages 975-994, August.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-023-01351-3
    DOI: 10.1007/s10898-023-01351-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01351-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01351-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    2. László Csirmaz, 2016. "Using multiobjective optimization to map the entropy region," Computational Optimization and Applications, Springer, vol. 63(1), pages 45-67, January.
    3. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    4. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    5. Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
    6. Pubudu L. W. Jayasekara & Andrew C. Pangia & Margaret M. Wiecek, 2023. "On solving parametric multiobjective quadratic programs with parameters in general locations," Annals of Operations Research, Springer, vol. 320(1), pages 123-172, January.
    7. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    8. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    9. Lizhen Shao & Matthias Ehrgott, 2008. "Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 257-276, October.
    10. Gabriele Eichfelder & Patrick Groetzner, 2022. "A note on completely positive relaxations of quadratic problems in a multiobjective framework," Journal of Global Optimization, Springer, vol. 82(3), pages 615-626, March.
    11. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
    2. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    3. Ina Lammel & Karl-Heinz Küfer & Philipp Süss, 2025. "Efficient Approximation Quality Computation for Sandwiching Algorithms for Convex Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-21, March.
    4. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    5. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    6. Zachary Feinstein & Birgit Rudloff, 2024. "Deep learning the efficient frontier of convex vector optimization problems," Journal of Global Optimization, Springer, vol. 90(2), pages 429-458, October.
    7. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    8. Zachary Feinstein & Birgit Rudloff, 2022. "Deep Learning the Efficient Frontier of Convex Vector Optimization Problems," Papers 2205.07077, arXiv.org, revised May 2024.
    9. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.
    10. Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.
    11. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    12. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    13. Daniel Dörfler & Andreas Löhne, 2024. "Polyhedral Approximation of Spectrahedral Shadows via Homogenization," Journal of Optimization Theory and Applications, Springer, vol. 200(2), pages 874-890, February.
    14. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    15. Birgit Rudloff & Firdevs Ulus, 2019. "Certainty Equivalent and Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization," Papers 1904.09456, arXiv.org, revised Oct 2020.
    16. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    17. Löhne, Andreas & Weißing, Benjamin, 2017. "The vector linear program solver Bensolve – notes on theoretical background," European Journal of Operational Research, Elsevier, vol. 260(3), pages 807-813.
    18. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    19. Zachary Feinstein & Niklas Hey & Birgit Rudloff, 2023. "Approximating the set of Nash equilibria for convex games," Papers 2310.04176, arXiv.org, revised Apr 2024.
    20. c{C}au{g}{i}n Ararat & Nurtai Meimanjan, 2019. "Computation of systemic risk measures: a mixed-integer programming approach," Papers 1903.08367, arXiv.org, revised Aug 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-023-01351-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.