IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i4d10.1007_s10898-023-01306-8.html
   My bibliography  Save this article

Reference-point-based branch and bound algorithm for multiobjective optimization

Author

Listed:
  • Wei-tian Wu

    (Sichuan University)

  • Xin-min Yang

    (National Center for Applied Mathematics of Chongqing
    Chongqing Normal University)

Abstract

In this paper, a nonconvex multiobjective optimization problem with Lipschitz objective functions is considered. A branch and bound algorithm that incorporates the decision maker’s preference information is proposed for this problem. In the proposed algorithm, a new discarding test is designed to check whether a box contains preferred solutions according to the preference information expressed by means of reference points. In this way, the proposed algorithm is able to gradually guide the search towards the region of interest on the Pareto fronts during the solution process. We prove that the proposed algorithm obtains $$\varepsilon $$ ε -efficient solutions distributed among the regions of interest with respect to the given reference points. Moreover, lower bound on the total finite number of required iterations for predefined precision is also provided. Finally, the algorithm is illustrated with a number of test problems.

Suggested Citation

  • Wei-tian Wu & Xin-min Yang, 2024. "Reference-point-based branch and bound algorithm for multiobjective optimization," Journal of Global Optimization, Springer, vol. 88(4), pages 927-945, April.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01306-8
    DOI: 10.1007/s10898-023-01306-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01306-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01306-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    2. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "Correction to: A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 229-229, May.
    3. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    4. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    5. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    2. Ina Lammel & Karl-Heinz Küfer & Philipp Süss, 2025. "Efficient Approximation Quality Computation for Sandwiching Algorithms for Convex Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-21, March.
    3. Eichfelder, Gabriele & Warnow, Leo, 2023. "Advancements in the computation of enclosures for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 310(1), pages 315-327.
    4. Luca Benvenuti & Alberto Santis & Marianna Santis & Daniele Patria, 2024. "Designing sustainable diet plans by solving triobjective integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(3), pages 703-721, December.
    5. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    6. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.
    7. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    8. Gabriele Eichfelder & Leo Warnow, 2024. "A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 291-320, August.
    9. Vahid Mahmoodian & Iman Dayarian & Payman Ghasemi Saghand & Yu Zhang & Hadi Charkhgard, 2022. "A Criterion Space Branch-and-Cut Algorithm for Mixed Integer Bilinear Maximum Multiplicative Programs," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1453-1470, May.
    10. Samira Fallah & Ted K. Ralphs & Natashia L. Boland, 2024. "On the relationship between the value function and the efficient frontier of a mixed integer linear optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 175-220, August.
    11. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.
    12. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    13. Oliver Stein & Maximilian Volk, 2023. "Generalized Polarity and Weakest Constraint Qualifications in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1156-1190, September.
    14. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Miguel A. Martínez, 2021. "A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization," Mathematics, MDPI, vol. 9(9), pages 1-28, April.
    15. Francisco Salas-Molina & Juan A. Rodriguez-Aguilar & Pablo Díaz-García, 2018. "Selecting cash management models from a multiobjective perspective," Annals of Operations Research, Springer, vol. 261(1), pages 275-288, February.
    16. Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
    17. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    18. A. Garcia-Bernabeu & J. V. Salcedo & A. Hilario & D. Pla-Santamaria & Juan M. Herrero, 2019. "Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA," Complexity, Hindawi, vol. 2019, pages 1-12, December.
    19. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    20. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Papers 1706.01254, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01306-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.