IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i2d10.1007_s10957-024-02573-5.html
   My bibliography  Save this article

An Efficient Implementation of Interior-Point Methods for a Class of Nonsymmetric Cones

Author

Listed:
  • Yuwen Chen

    (University of Oxford)

  • Paul Goulart

    (University of Oxford)

Abstract

We present an implementation of interior-point methods for generalized power cones, power mean cones and relative entropy cones, by exploiting underlying low-rank and sparsity properties of the Hessians of their logarithmically homogeneous self-concordant barrier functions. We prove that the augmented linear system in our interior-point method can be sparse and quasidefinite after adding a static regularization term, enabling the use of sparse LDL factorization for nonsymmetric cones. Numerical results show that our implementation can exploit sparsity in our test examples.

Suggested Citation

  • Yuwen Chen & Paul Goulart, 2025. "An Efficient Implementation of Interior-Point Methods for a Class of Nonsymmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 204(2), pages 1-28, February.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02573-5
    DOI: 10.1007/s10957-024-02573-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02573-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02573-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    2. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    3. Michael Garstka & Mark Cannon & Paul Goulart, 2021. "COSMO: A Conic Operator Splitting Method for Convex Conic Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 779-810, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikitas Rontsis & Paul Goulart & Yuji Nakatsukasa, 2022. "Efficient Semidefinite Programming with Approximate ADMM," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 292-320, January.
    2. Bo Yang & Xinyuan Zhao & Xudong Li & Defeng Sun, 2025. "An Accelerated Proximal Alternating Direction Method of Multipliers for Optimal Decentralized Control of Uncertain Systems," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-37, January.
    3. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.
    4. Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
    5. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    6. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    7. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    8. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    9. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    10. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    11. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    12. Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
    13. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    14. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    15. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    16. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    17. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    18. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    19. G. Q. Wang & Y. Q. Bai & X. Y. Gao & D. Z. Wang, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Interior-Point Methods for Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 242-262, April.
    20. Jianming Pan & Zeqi Ye & Xiao Yang & Xu Yang & Weiqing Liu & Lewen Wang & Jiang Bian, 2024. "BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning," Papers 2411.19285, arXiv.org, revised Dec 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02573-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.