IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i2d10.1007_s10957-023-02292-3.html
   My bibliography  Save this article

An Approximation Algorithm for Optimal Piecewise Linear Interpolations of Bounded Variable Products

Author

Listed:
  • Andreas Bärmann

    (Discrete Optimization)

  • Robert Burlacu

    (Discrete Optimization)

  • Lukas Hager

    (Discrete Optimization)

  • Katja Kutzer

    (Discrete Optimization)

Abstract

We investigate the optimal piecewise linear interpolation of the bivariate product xy over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the interpolation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using these as building blocks, we construct a triangulation scheme called crossing swords that requires at most - times the number of simplices in any optimal triangulation. In other words, we derive an approximation algorithm for the optimal triangulation problem. We also show that crossing swords yields optimal triangulations in the case that each simplex has at least one axis-parallel edge. Furthermore, we present approximation guarantees for other well-known triangulation schemes, namely for the red refinement and longest-edge bisection strategies as well as for a generalized version of K1-triangulations. Thereby, we are able to show that our novel approach dominates previous triangulation schemes from the literature, which is underlined by illustrative numerical examples.

Suggested Citation

  • Andreas Bärmann & Robert Burlacu & Lukas Hager & Katja Kutzer, 2023. "An Approximation Algorithm for Optimal Piecewise Linear Interpolations of Bounded Variable Products," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 569-599, November.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02292-3
    DOI: 10.1007/s10957-023-02292-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02292-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02292-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    2. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    3. Loay Alkhalifa & Hans Mittelmann, 2022. "New Algorithm to Solve Mixed Integer Quadratically Constrained Quadratic Programming Problems Using Piecewise Linear Approximation," Mathematics, MDPI, vol. 10(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    2. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    3. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    4. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    5. Wu, Yaqing & Maravelias, Christos T., 2024. "Piecewise linear trees as surrogate models for system design and planning under high-frequency temporal variability," European Journal of Operational Research, Elsevier, vol. 315(2), pages 541-552.
    6. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    7. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    8. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    9. Wei, Tangjian & Batley, Richard & Liu, Ronghui & Xu, Guangming & Tang, Yili, 2024. "A method of time-varying demand distribution estimation for high-speed railway networks with user equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    10. Dimitri Thomopulos & Wim van Ackooij & Claudia D’Ambrosio & Marc Stefanon, 2024. "Generating hydro unit commitment instances," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 106-136, April.
    11. Abushaega, Mastoor M. & González, Andrés D. & Moshebah, Osamah Y., 2024. "A fairness-based multi-objective distribution and restoration model for enhanced resilience of supply chain transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Eduardo Rauh Müller & Eduardo Camponogara & Laio Oriel Seman & Eduardo Otte Hülse & Bruno Ferreira Vieira & Luis Kin Miyatake & Alex Furtado Teixeira, 2022. "Short-term steady-state production optimization of offshore oil platforms: wells with dual completion (gas-lift and ESP) and flow assurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 152-180, April.
    13. Han-Lin Li & Yao-Huei Huang & Shu-Cherng Fang, 2017. "Linear Reformulation of Polynomial Discrete Programming for Fast Computation," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 108-122, February.
    14. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    15. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    16. Peter Kirst & Christian Füllner, 2025. "On the use of restriction of the right-hand side in spatial branch-and-bound algorithms to ensure termination," Computational Optimization and Applications, Springer, vol. 90(3), pages 691-720, April.
    17. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    18. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    19. Shima Azizi & Cem Deniz Caglar Bozkir & Andrew C. Trapp & O. Erhun Kundakcioglu & Ali Kaan Kurbanzade, 2021. "Aid Allocation for Camp‐Based and Urban Refugees with Uncertain Demand and Replenishments," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4455-4474, December.
    20. Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02292-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.