IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i3d10.1007_s10589-025-00652-5.html
   My bibliography  Save this article

On the use of restriction of the right-hand side in spatial branch-and-bound algorithms to ensure termination

Author

Listed:
  • Peter Kirst

    (Wageningen University & Research (WUR))

  • Christian Füllner

    (Karlsruhe Institute of Technology)

Abstract

Spatial branch-and-bound algorithms for global minimization of non-convex problems require both lower and upper bounding procedures that finally converge to a globally optimal value in order to ensure termination of these methods. Whereas convergence of lower bounds is commonly guaranteed for standard approaches in the literature, this does not always hold for upper bounds. For this reason, different so-called convergent upper bounding procedures are proposed. These methods are not always used in practice, possibly due to their additional complexity or possibly due to increasing runtimes on average problems. For that reason, in this article we propose a refinement of classical branch-and-bound methods that is simple to implement and comes with marginal overhead. We prove that this small improvement already leads to convergent upper bounds, and thus show that termination of spatial branch-and-bound methods is ensured under mild assumptions.

Suggested Citation

  • Peter Kirst & Christian Füllner, 2025. "On the use of restriction of the right-hand side in spatial branch-and-bound algorithms to ensure termination," Computational Optimization and Applications, Springer, vol. 90(3), pages 691-720, April.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00652-5
    DOI: 10.1007/s10589-025-00652-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00652-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00652-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 617-643, November.
    2. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    3. Peter Dickinson, 2014. "On the exhaustivity of simplicial partitioning," Journal of Global Optimization, Springer, vol. 58(1), pages 189-203, January.
    4. Ralph Kearfott, 2014. "On rigorous upper bounds to a global optimum," Journal of Global Optimization, Springer, vol. 59(2), pages 459-476, July.
    5. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    6. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Füllner & Peter Kirst & Hendrik Otto & Steffen Rebennack, 2024. "Feasibility Verification and Upper Bound Computation in Global Minimization Using Approximate Active Index Sets," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1737-1756, December.
    2. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    3. Andreas Bärmann & Robert Burlacu & Lukas Hager & Thomas Kleinert, 2023. "On piecewise linear approximations of bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations," Journal of Global Optimization, Springer, vol. 85(4), pages 789-819, April.
    4. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    5. Aloïs Duguet & Christian Artigues & Laurent Houssin & Sandra Ulrich Ngueveu, 2022. "Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in $$\mathbb {R}^2$$ R 2," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 418-448, November.
    6. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    7. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    8. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    9. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    10. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    11. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    12. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    13. Mohammadreza Safi & Seyed Saeed Nabavi & Richard J. Caron, 2021. "A modified simplex partition algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 81(3), pages 645-658, November.
    14. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    15. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    16. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    17. Fengqiao Luo & Sanjay Mehrotra, 2021. "A geometric branch and bound method for robust maximization of convex functions," Journal of Global Optimization, Springer, vol. 81(4), pages 835-859, December.
    18. Ngueveu, Sandra Ulrich, 2019. "Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer linear programming-based solution methods," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1058-1071.
    19. Andreas Bärmann & Robert Burlacu & Lukas Hager & Katja Kutzer, 2023. "An Approximation Algorithm for Optimal Piecewise Linear Interpolations of Bounded Variable Products," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 569-599, November.
    20. Frank Karsten & Marco Slikker & Peter Borm, 2017. "Cost allocation rules for elastic single‐attribute situations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 271-286, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00652-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.