IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i2d10.1007_s10957-020-01704-y.html
   My bibliography  Save this article

Quenched Mass Transport of Particles Toward a Target

Author

Listed:
  • Bruno Bouchard

    (Université Paris-Dauphine, PSL University, CNRS)

  • Boualem Djehiche

    (KTH Royal Institute of Technology)

  • Idris Kharroubi

    (Sorbonne Université, Université de Paris)

Abstract

We consider the stochastic target problem of finding the collection of initial laws of a mean-field stochastic differential equation such that we can control its evolution to ensure that it reaches a prescribed set of terminal probability distributions, at a fixed time horizon. Here, laws are considered conditionally to the path of the Brownian motion that drives the system. This kind of problems is motivated by limiting behavior of interacting particles systems with applications in, for example, agricultural crop management. We establish a version of the geometric dynamic programming principle for the associated reachability sets and prove that the corresponding value function is a viscosity solution of a geometric partial differential equation. This provides a characterization of the initial masses that can be almost surely transported toward a given target, along the paths of a stochastic differential equation. Our results extend those of Soner and Touzi, Journal of the European Mathematical Society (2002) to our setting.

Suggested Citation

  • Bruno Bouchard & Boualem Djehiche & Idris Kharroubi, 2020. "Quenched Mass Transport of Particles Toward a Target," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 345-374, August.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:2:d:10.1007_s10957-020-01704-y
    DOI: 10.1007/s10957-020-01704-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01704-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01704-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    2. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Yao, Song, 2024. "Stochastic control/stopping problem with expectation constraints," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
    2. Camilo Hernández & Dylan Possamaï, 2024. "Time‐inconsistent contract theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 1022-1085, July.
    3. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    4. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.
    5. Camilo Hern'andez & Dylan Possamai, 2023. "Time-inconsistent contract theory," Papers 2303.01601, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "A dynamic theory of spatial externalities," Games and Economic Behavior, Elsevier, vol. 132(C), pages 133-165.
    2. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    3. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    4. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    5. Askoura, Youcef & Billot, Antoine, 2021. "Social decision for a measure society," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    6. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    7. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    8. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    9. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    10. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    11. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," AMSE Working Papers 1902, Aix-Marseille School of Economics, France.
    12. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    13. He, Wei & Yannelis, Nicholas C., 2015. "Equilibrium theory under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 86-95.
    14. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    15. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    16. Jeongwoo Lee & Jaeok Park, 2019. "Preemptive Entry in Sequential Auctions with Participation Cost," Working papers 2019rwp-141, Yonsei University, Yonsei Economics Research Institute.
    17. Sudhir A. Shah, 2016. "The Generalized Arrow-Pratt Coefficient," Working Papers id:10795, eSocialSciences.
    18. Luçon, Eric, 2020. "Quenched asymptotics for interacting diffusions on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6783-6842.
    19. Lashi Bandara & Paul Bryan, 2020. "Heat kernels and regularity for rough metrics on smooth manifolds," Mathematische Nachrichten, Wiley Blackwell, vol. 293(12), pages 2255-2270, December.
    20. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:2:d:10.1007_s10957-020-01704-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.