IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v182y2019i2d10.1007_s10957-019-01524-9.html
   My bibliography  Save this article

Convergence Rates of Forward–Douglas–Rachford Splitting Method

Author

Listed:
  • Cesare Molinari

    (Normandie Université)

  • Jingwei Liang

    (University of Cambridge)

  • Jalal Fadili

    (Normandie Université)

Abstract

Over the past decades, operator splitting methods have become ubiquitous for non-smooth optimization owing to their simplicity and efficiency. In this paper, we consider the Forward–Douglas–Rachford splitting method and study both global and local convergence rates of this method. For the global rate, we establish a sublinear convergence rate in terms of a Bregman divergence suitably designed for the objective function. Moreover, when specializing to the Forward–Backward splitting, we prove a stronger convergence rate result for the objective function value. Then locally, based on the assumption that the non-smooth part of the optimization problem is partly smooth, we establish local linear convergence of the method. More precisely, we show that the sequence generated by Forward–Douglas–Rachford first (i) identifies a smooth manifold in a finite number of iteration and then (ii) enters a local linear convergence regime, which is for instance characterized in terms of the structure of the underlying active smooth manifold. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from applicative fields including, for instance, signal/image processing, inverse problems and machine learning.

Suggested Citation

  • Cesare Molinari & Jingwei Liang & Jalal Fadili, 2019. "Convergence Rates of Forward–Douglas–Rachford Splitting Method," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 606-639, August.
  • Handle: RePEc:spr:joptap:v:182:y:2019:i:2:d:10.1007_s10957-019-01524-9
    DOI: 10.1007/s10957-019-01524-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01524-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01524-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Jingwei Liang & Jalal Fadili & Gabriel Peyré, 2017. "Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 874-913, March.
    3. Samuel Vaiter & Charles Deledalle & Jalal Fadili & Gabriel Peyré & Charles Dossal, 2017. "The degrees of freedom of partly smooth regularizers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 791-832, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwei Liu & Ting Wang & Zexian Liu, 2022. "Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems," Computational Optimization and Applications, Springer, vol. 83(2), pages 651-691, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2020. "Sharp oracle inequalities for low-complexity priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 353-397, April.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
    5. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    6. Angelo Milfont & Alvaro Veiga, 2025. "Structural breaks detection and variable selection in dynamic linear regression via the Iterative Fused LASSO in high dimension," Papers 2502.20816, arXiv.org, revised Apr 2025.
    7. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    8. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    9. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    10. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    11. Franck Rapaport & Christina Leslie, 2010. "Determining Frequent Patterns of Copy Number Alterations in Cancer," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    12. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    13. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    14. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    15. repec:plo:pone00:0034262 is not listed on IDEAS
    16. Wang, Li-Yu & Park, Cheolwoo & Yeon, Kyupil & Choi, Hosik, 2017. "Tracking concept drift using a constrained penalized regression combiner," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 52-69.
    17. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    18. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    19. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    20. Aytug, Haldun & Sayın, Serpil, 2012. "Exploring the trade-off between generalization and empirical errors in a one-norm SVM," European Journal of Operational Research, Elsevier, vol. 218(3), pages 667-675.
    21. Hwang, Youngdeok & Kim, Hang J. & Chang, Won & Yeo, Kyongmin & Kim, Yongku, 2019. "Bayesian pollution source identification via an inverse physics model," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 76-92.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:182:y:2019:i:2:d:10.1007_s10957-019-01524-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.