RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1010758
Download full text from publisher
References listed on IDEAS
- Yin Xia & Tianxi Cai & T. Tony Cai, 2015. "Testing differential networks with applications to the detection of gene-gene interactions," Biometrika, Biometrika Trust, vol. 102(2), pages 247-266.
- Daniela M. Witten & Robert Tibshirani, 2009. "Covariance‐regularized regression and classification for high dimensional problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 615-636, June.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
- Ting Wang & Zhao Ren & Ying Ding & Zhou Fang & Zhe Sun & Matthew L MacDonald & Robert A Sweet & Jieru Wang & Wei Chen, 2016. "FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-16, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
- Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
- Laurenţiu Cătălin Hinoveanu & Fabrizio Leisen & Cristiano Villa, 2020. "A loss‐based prior for Gaussian graphical models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 444-466, December.
- Matthias Weber & Martin Schumacher & Harald Binder, 2014. "Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs," Tinbergen Institute Discussion Papers 14-089/I, Tinbergen Institute.
- Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
- Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
- Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
- Rong Zhang & Zhao Ren & Wei Chen, 2018. "SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-14, August.
- Ning Zhang & Jin Yang, 2023. "Sparse precision matrix estimation with missing observations," Computational Statistics, Springer, vol. 38(3), pages 1337-1355, September.
- Samuel Vaiter & Charles Deledalle & Jalal Fadili & Gabriel Peyré & Charles Dossal, 2017. "The degrees of freedom of partly smooth regularizers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 791-832, August.
- Yunzhang Zhu & Xiaotong Shen & Wei Pan, 2014. "Structural Pursuit Over Multiple Undirected Graphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1683-1696, December.
- Saverio Ranciati & Alberto Roverato & Alessandra Luati, 2021. "Fused graphical lasso for brain networks with symmetries," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1299-1322, November.
- Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
- Yifan He & Yang Feng & Xinyuan Song, 2023. "Variable selection for high‐dimensional generalized linear model with block‐missing data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1279-1297, September.
- David Hallac & Peter Nystrup & Stephen Boyd, 2019. "Greedy Gaussian segmentation of multivariate time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 727-751, September.
- Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
- Le, Khuyen T. & Chaux, Caroline & Richard, Frédéric J.P. & Guedj, Eric, 2020. "An adapted linear discriminant analysis with variable selection for the classification in high-dimension, and an application to medical data," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
- Yi Zhao & Bingkai Wang & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Brian S. Caffo & Xi Luo, 2023. "Identifying brain hierarchical structures associated with Alzheimer's disease using a regularized regression method with tree predictors," Biometrics, The International Biometric Society, vol. 79(3), pages 2333-2345, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010758. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.