IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i5p1299-1322.html
   My bibliography  Save this article

Fused graphical lasso for brain networks with symmetries

Author

Listed:
  • Saverio Ranciati
  • Alberto Roverato
  • Alessandra Luati

Abstract

Neuroimaging is the growing area of neuroscience devoted to produce data with the goal of capturing processes and dynamics of the human brain. We consider the problem of inferring the brain connectivity network from time‐dependent functional magnetic resonance imaging (fMRI) scans. To this aim we propose the symmetric graphical lasso, a penalized likelihood method with a fused type penalty function that takes into explicit account the natural symmetrical structure of the brain. Symmetric graphical lasso allows one to learn simultaneously both the network structure and a set of symmetries across the two hemispheres. We implement an alternating directions method of multipliers algorithm to solve the corresponding convex optimization problem. Furthermore, we apply our methods to estimate the brain networks of two subjects, one healthy and one affected by mental disorder, and to compare them with respect to their symmetric structure. The method applies once the temporal dependence characterizing fMRI data have been accounted for and we compare the impact on the analysis of different detrending techniques on the estimated brain networks. Although we focus on brain networks, symmetric graphical lasso is a tool which can be more generally applied to learn multiple networks in a context of dependent samples.

Suggested Citation

  • Saverio Ranciati & Alberto Roverato & Alessandra Luati, 2021. "Fused graphical lasso for brain networks with symmetries," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1299-1322, November.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1299-1322
    DOI: 10.1111/rssc.12514
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12514
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, Enero-Abr.
    2. Højsgaard, Søren & Lauritzen, Steffen L., 2007. "Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i06).
    3. Søren Højsgaard & Steffen L. Lauritzen, 2008. "Graphical Gaussian models with edge and vertex symmetries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1005-1027, November.
    4. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    5. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    6. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    7. Dvir Aran & Roman Camarda & Justin Odegaard & Hyojung Paik & Boris Oskotsky & Gregor Krings & Andrei Goga & Marina Sirota & Atul J. Butte, 2017. "Comprehensive analysis of normal adjacent to tumor transcriptomes," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    8. H Massam & Q Li & X Gao, 2018. "Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries," Biometrika, Biometrika Trust, vol. 105(2), pages 371-388.
    9. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    10. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    11. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    12. Peter C St. John & Francis J Doyle III, 2015. "Quantifying Stochastic Noise in Cultured Circadian Reporter Cells," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    2. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    3. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    4. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    5. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
    6. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    7. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    8. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    9. Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022. "Implicit score-driven filters for time-varying parameter models," Tinbergen Institute Discussion Papers 22-066/III, Tinbergen Institute, revised 21 Nov 2024.
    10. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    11. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
    12. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
    13. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
    14. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
    15. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    16. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
    17. Francisco Blasques & Enzo D'Innocenzo & Siem Jan Koopman, 2021. "Common and Idiosyncratic Conditional Volatility Factors: Theory and Empirical Evidence," Tinbergen Institute Discussion Papers 21-057/III, Tinbergen Institute.
    18. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    19. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    20. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1299-1322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.