IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v470y2022ics0304380022001132.html
   My bibliography  Save this article

Data-driven agent-based model building for animal movement through Exploratory Data Analysis

Author

Listed:
  • Butts, David J.
  • Thompson, Noelle E.
  • Christensen, Sonja A.
  • Williams, David M.
  • Murillo, Michael S.

Abstract

Fields studying animal movement are data-starved due to large monetary and time costs of data collection, and, moreover, not all quantities of interest can be measured. Despite limited data, diverse models have been developed to study animal movement. Many of these models are based on random walks that use Gaussian noise. Examinations of real movement data show that the assumptions made in these models are not always valid on all spatial and time scales, and these shortcomings suggest that new models may be needed. We provide methods for developing and training more realistic models, specifically agent-based models of animal movement, by taking a data-driven approach. We took an exploratory data analysis (EDA) approach that allowed us to develop a model that best reproduced the movement patterns we observed in a real dataset of animal locations. In our EDA, we examined distributions of positions, calculated the autocorrelation of the movement data, used Fourier analysis, calculated mean-squared displacements, and tested for correlations. We introduce the fused-lasso regression-analysis method for identifying large and sudden changes in position through a non-parametric fit that is sensitive to discontinuities. We introduce the copula and kernel-density estimates as methods for approximating coordinate-system-independent movement correlations from the marginal location differences represented in our data set; use of the copula allows us to create correlated, non-Gaussian noise. With the insights gained from our EDA, we created a Langevin model that describes the movements of an individual animal, features non-Gaussian noise and incorporates multiple movement patterns. We extended this model to an agent-based model that describes the movements of several groups of deer. We compared our Langevin model to three models built on different assumptions that result in substantial differences in the area covered by an animal. Using our agent-based model, we simulated three groups of deer with parameters sampled from our data to illustrate the amount of area covered by deer in our model and the ability of groups to overlap in space. This overlapping behavior is an important feature of models of processes driven by interactions between animals, such as infectious diseases; our model could be useful for studying the spread of infectious diseases in animal populations, such as chronic wasting disease. While we have applied our data-driven methods to animal movement, these methods are widely applicable to developing and training models using a wide range of data sources.

Suggested Citation

  • Butts, David J. & Thompson, Noelle E. & Christensen, Sonja A. & Williams, David M. & Murillo, Michael S., 2022. "Data-driven agent-based model building for animal movement through Exploratory Data Analysis," Ecological Modelling, Elsevier, vol. 470(C).
  • Handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001132
    DOI: 10.1016/j.ecolmodel.2022.110001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew M. Edwards & Richard A. Phillips & Nicholas W. Watkins & Mervyn P. Freeman & Eugene J. Murphy & Vsevolod Afanasyev & Sergey V. Buldyrev & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley & Ga, 2007. "Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer," Nature, Nature, vol. 449(7165), pages 1044-1048, October.
    2. Yajie Zou & Xinzhi Zhong & Jinjun Tang & Xin Ye & Lingtao Wu & Muhammad Ijaz & Yinhai Wang, 2019. "A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    3. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    4. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    5. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    6. David M Williams & Amy C Dechen Quinn & William F Porter, 2014. "Informing Disease Models with Temporal and Spatial Contact Structure among GPS-Collared Individuals in Wild Populations," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    7. Edsall, Robert M., 2003. "The parallel coordinate plot in action: design and use for geographic visualization," Computational Statistics & Data Analysis, Elsevier, vol. 43(4), pages 605-619, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    5. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    6. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    7. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    8. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    9. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    10. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    11. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    12. Jingjing Xu & Behram Wali & Xiaobing Li & Jiaqi Yang, 2019. "Injury Severity and Contributing Driver Actions in Passenger Vehicle–Truck Collisions," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    13. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    14. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    15. Terence C. Cheng & Pravin K. Trivedi, 2015. "Attrition Bias in Panel Data: A Sheep in Wolf's Clothing? A Case Study Based on the Mabel Survey," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1101-1117, September.
    16. Franck Rapaport & Christina Leslie, 2010. "Determining Frequent Patterns of Copy Number Alterations in Cancer," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    17. Genius, Margarita & Stefanou, Spiro E. & Tzouvelekas, Vangelis, 2012. "Measuring productivity growth under factor non-substitution: An application to US steam-electric power generation utilities," European Journal of Operational Research, Elsevier, vol. 220(3), pages 844-852.
    18. Wang, Richard & Ye, Zhongnan & Lu, Miaojia & Hsu, Shu-Chien, 2022. "Understanding post-pandemic work-from-home behaviours and community level energy reduction via agent-based modelling," Applied Energy, Elsevier, vol. 322(C).
    19. Lee, Richard J. & Sener, Ipek N. & Mokhtarian, Patricia L. & Handy, Susan L., 2017. "Relationships between the online and in-store shopping frequency of Davis, California residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 40-52.
    20. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:470:y:2022:i:c:s0304380022001132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.