IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v158y2013i2d10.1007_s10957-012-0230-3.html
   My bibliography  Save this article

Scenario Approximation of Robust and Chance-Constrained Programs

Author

Listed:
  • Raffaello Seri

    (Università degli Studi dell’Insubria)

  • Christine Choirat

    (Universidad de Navarra)

Abstract

We consider scenario approximation of problems given by the optimization of a function over a constraint that is too difficult to be handled but can be efficiently approximated by a finite collection of constraints corresponding to alternative scenarios. The covered programs include min-max games, and semi-infinite, robust and chance-constrained programming problems. We prove convergence of the solutions of the approximated programs to the given ones, using mainly epigraphical convergence, a kind of variational convergence that has demonstrated to be a valuable tool in optimization problems.

Suggested Citation

  • Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
  • Handle: RePEc:spr:joptap:v:158:y:2013:i:2:d:10.1007_s10957-012-0230-3
    DOI: 10.1007/s10957-012-0230-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0230-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0230-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Jagannathan, 1974. "Chance-Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 22(2), pages 358-372, April.
    2. Stanislav Žaković & Berc Rustem, 2003. "Semi-Infinite Programming and Applications to Minimax Problems," Annals of Operations Research, Springer, vol. 124(1), pages 81-110, November.
    3. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    4. Giovanna Redaelli, 1998. "Convergence problems in stochastic programming models with probabilistic constraints," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 21(1), pages 147-164, June.
    5. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    6. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    7. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    8. F. M. Allen & R. N. Braswell & P. V. Rao, 1974. "Distribution-Free Approximations for Chance Constraints," Operations Research, INFORMS, vol. 22(3), pages 610-621, June.
    9. Nobel, Andrew, 1995. "A counterexample concerning uniform ergodic theorems for a class of functions," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 165-168, August.
    10. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    11. Ilya S. Molchanov, 1998. "A Limit Theorem for Solutions of Inequalities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 235-242, March.
    12. Sengupta, J K, 1970. "Stochastic Linear Programming with Chance Constraints," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 101-116, February.
    13. Teemu Pennanen, 2005. "Epi-Convergent Discretizations of Multistage Stochastic Programs," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 245-256, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Secchi & Raffaello Seri, 2017. "Controlling for false negatives in agent-based models: a review of power analysis in organizational research," Computational and Mathematical Organization Theory, Springer, vol. 23(1), pages 94-121, March.
    2. Seri, Raffaello & Martinoli, Mario & Secchi, Davide & Centorrino, Samuele, 2021. "Model calibration and validation via confidence sets," Econometrics and Statistics, Elsevier, vol. 20(C), pages 62-86.
    3. Lingzi Jin & Xiao Wang, 2022. "A stochastic primal-dual method for a class of nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 143-180, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Nemirovski, Arkadi, 2012. "On safe tractable approximations of chance constraints," European Journal of Operational Research, Elsevier, vol. 219(3), pages 707-718.
    4. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    5. Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
    6. Fontem, Belleh & Smith, Jeremiah, 2019. "Analysis of a chance-constrained new product risk model with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 272(3), pages 999-1016.
    7. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    8. Bowen Li & Ruiwei Jiang & Johanna L. Mathieu, 2022. "Integrating unimodality into distributionally robust optimal power flow," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 594-617, October.
    9. Daniel Jungen & Hatim Djelassi & Alexander Mitsos, 2022. "Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 83-112, August.
    10. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    11. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    12. Jianqiang Cheng & Richard Li-Yang Chen & Habib N. Najm & Ali Pinar & Cosmin Safta & Jean-Paul Watson, 2018. "Chance-constrained economic dispatch with renewable energy and storage," Computational Optimization and Applications, Springer, vol. 70(2), pages 479-502, June.
    13. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    14. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    15. Bitran, Gabriel R. & Leong, Thin-Yin., 1990. "Distribution-free, uniformly-tighter linear approximations for chance-constrained programming," Working papers 3111-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    17. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    18. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    19. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    20. Li-Ping Pang & Qi Wu & Jin-He Wang & Qiong Wu, 2020. "A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods," Computational Optimization and Applications, Springer, vol. 76(1), pages 125-153, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:158:y:2013:i:2:d:10.1007_s10957-012-0230-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.