IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v89y2024i3d10.1007_s10589-024-00602-7.html
   My bibliography  Save this article

Robust approximation of chance constrained optimization with polynomial perturbation

Author

Listed:
  • Bo Rao

    (Xiangtan University)

  • Liu Yang

    (Xiangtan University
    Xiangtan University)

  • Suhan Zhong

    (Texas A&M University)

  • Guangming Zhou

    (Xiangtan University
    Xiangtan University)

Abstract

This paper proposes a robust approximation method for solving chance constrained optimization (CCO) of polynomials. Assume the CCO is defined with an individual chance constraint that is affine in the decision variables. We construct a robust approximation by replacing the chance constraint with a robust constraint over an uncertainty set. When the objective function is linear or SOS-convex, the robust approximation can be equivalently transformed into linear conic optimization. Semidefinite relaxation algorithms are proposed to solve these linear conic transformations globally and their convergent properties are studied. We also introduce a heuristic method to find efficient uncertainty sets such that optimizers of the robust approximation are feasible to the original problem. Numerical experiments are given to show the efficiency of our method.

Suggested Citation

  • Bo Rao & Liu Yang & Suhan Zhong & Guangming Zhou, 2024. "Robust approximation of chance constrained optimization with polynomial perturbation," Computational Optimization and Applications, Springer, vol. 89(3), pages 977-1003, December.
  • Handle: RePEc:spr:coopap:v:89:y:2024:i:3:d:10.1007_s10589-024-00602-7
    DOI: 10.1007/s10589-024-00602-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00602-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00602-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    6. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Yuan & Zukui Li & Biao Huang, 2017. "Robust optimization approximation for joint chance constrained optimization problem," Journal of Global Optimization, Springer, vol. 67(4), pages 805-827, April.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    4. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    5. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    6. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    7. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    8. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    9. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    10. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    11. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    12. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    13. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.
    14. Fontem, Belleh & Smith, Jeremiah, 2019. "Analysis of a chance-constrained new product risk model with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 272(3), pages 999-1016.
    15. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    16. Bowen Li & Ruiwei Jiang & Johanna L. Mathieu, 2022. "Integrating unimodality into distributionally robust optimal power flow," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 594-617, October.
    17. Feng Shan & Liwei Zhang & Xiantao Xiao, 2014. "A Smoothing Function Approach to Joint Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 181-199, October.
    18. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    19. Zhouchun Huang & Qipeng Phil Zheng & Eduardo Pasiliao & Vladimir Boginski & Tao Zhang, 2019. "A cutting plane method for risk-constrained traveling salesman problem with random arc costs," Journal of Global Optimization, Springer, vol. 74(4), pages 839-859, August.
    20. Sun, Yimeng & Qiu, Ruozhen & Sun, Minghe, 2024. "A robust optimization approach for inventory management with limited-time discounts and service-level requirement under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:89:y:2024:i:3:d:10.1007_s10589-024-00602-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.