IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v125y2005i1d10.1007_s10957-004-1721-7.html
   My bibliography  Save this article

Superlinear Convergence of a Newton-Type Algorithm for Monotone Equations

Author

Listed:
  • G. Zhou

    (Curtin University of Technology)

  • K. C. Toh

    (National University of Singapore)

Abstract

We consider the problem of finding solutions of systems of monotone equations. The Newton-type algorithm proposed in Ref. 1 has a very nice global convergence property in that the whole sequence of iterates generated by this algorithm converges to a solution, if it exists. Superlinear convergence of this algorithm is obtained under a standard nonsingularity assumption. The nonsingularity condition implies that the problem has a unique solution; thus, for a problem with more than one solution, such a nonsingularity condition cannot hold. In this paper, we show that the superlinear convergence of this algorithm still holds under a local error-bound assumption that is weaker than the standard nonsingularity condition. The local error-bound condition may hold even for problems with nonunique solutions. As an application, we obtain a Newton algorithm with very nice global and superlinear convergence for the minimum norm solution of linear programs.

Suggested Citation

  • G. Zhou & K. C. Toh, 2005. "Superlinear Convergence of a Newton-Type Algorithm for Monotone Equations," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 205-221, April.
  • Handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1721-7
    DOI: 10.1007/s10957-004-1721-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1721-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1721-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroshige Dan & Nobuo Yamashita & Masao Fukushima, 2002. "A Superlinearly Convergent Algorithm for the Monotone Nonlinear Complementarity Problem Without Uniqueness and Nondegeneracy Conditions," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 743-753, November.
    2. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eltiyeb Ali & Salem Mahdi, 2023. "Adaptive Hybrid Mixed Two-Point Step Size Gradient Algorithm for Solving Non-Linear Systems," Mathematics, MDPI, vol. 11(9), pages 1-35, April.
    2. Papp, Zoltan & Rapajić, Sanja, 2015. "FR type methods for systems of large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 816-823.
    3. Awwal, Aliyu Muhammed & Kumam, Poom & Abubakar, Auwal Bala, 2019. "Spectral modified Polak–Ribiére–Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Najib Ullah & Abdullah Shah & Jamilu Sabi’u & Xiangmin Jiao & Aliyu Muhammed Awwal & Nuttapol Pakkaranang & Said Karim Shah & Bancha Panyanak, 2023. "A One-Parameter Memoryless DFP Algorithm for Solving System of Monotone Nonlinear Equations with Application in Image Processing," Mathematics, MDPI, vol. 11(5), pages 1-26, March.
    5. Chuanwei Wang & Yiju Wang & Chuanliang Xu, 2007. "A projection method for a system of nonlinear monotone equations with convex constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 33-46, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. J. Cánovas & M. J. Gisbert & D. Klatte & J. Parra, 2022. "Projection-Based Local and Global Lipschitz Moduli of the Optimal Value in Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 280-299, June.
    2. Andreas Fischer, 2015. "Comments on: Critical Lagrange multipliers: what we currently know about them, how they spoil our lives, and what we can do about it," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 27-31, April.
    3. Moosaei, H. & Ketabchi, S. & Noor, M.A. & Iqbal, J. & Hooshyarbakhsh, V., 2015. "Some techniques for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 696-705.
    4. Saeed Ketabchi & Hossein Moosaei, 2012. "Minimum Norm Solution to the Absolute Value Equation in the Convex Case," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 1080-1087, September.
    5. Hossein Moosaei & Milan Hladík, 2021. "On the Optimal Correction of Infeasible Systems of Linear Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 32-55, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1721-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.