IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i2d10.1007_s10845-023-02297-9.html
   My bibliography  Save this article

Causal deep learning for explainable vision-based quality inspection under visual interference

Author

Listed:
  • Tianbiao Liang

    (Donghua University
    Chongqing University)

  • Tianyuan Liu

    (The Hong Kong Polytechnic University)

  • Junliang Wang

    (Donghua University)

  • Jie Zhang

    (Donghua University)

  • Pai Zheng

    (The Hong Kong Polytechnic University)

Abstract

Vision-based quality inspection is a key step to ensure the quality control of complex industrial products. However, accurate defect recognition for complex products with information-rich, structure-irregular and significantly different patterns is still a tough problem, since it causes the strong visual interference. This paper proposes a causal deep learning method (CDLM) to tackle the explainable vision-based quality inspection under visual interference. First, a structural causal model for defect recognition of complex industrial products is constructed and a causal intervention strategy to overcome the background interference is generated. Second, a defect-guided recognition neural network (DGRNN) is constructed, which can realize accurate defect recognition under the training of CDLM via feature-wise causal intervention using two sub-networks with feature difference mechanism. Finally, the causality between defect features and defective product labels can guide the DGRNN to complete the accurate and explainable learning of defect in a causal direction of optimization. Quantitative experiments show that the proposed method achieves recognition accuracy of 94.09% and 93.95% on two fabric datasets respectively, which outperforms the cutting-edge inspection models. Besides, Grad-CAM visualization experiments show that the proposed method successfully captures the data causality and realizes the explainable defect recognition.

Suggested Citation

  • Tianbiao Liang & Tianyuan Liu & Junliang Wang & Jie Zhang & Pai Zheng, 2025. "Causal deep learning for explainable vision-based quality inspection under visual interference," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1363-1384, February.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02297-9
    DOI: 10.1007/s10845-023-02297-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02297-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02297-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanning Sun & Wei Qin & Zilong Zhuang, 2022. "Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1699-1713, August.
    2. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    3. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    2. Mahdi Mokhtarzadeh & Jorge Rodríguez-Echeverría & Ivana Semanjski & Sidharta Gautama, 2025. "Hybrid intelligence failure analysis for industry 4.0: a literature review and future prospective," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2309-2334, April.
    3. Karim Nadim & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Data-driven dynamic causality analysis of industrial systems using interpretable machine learning and process mining," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 57-83, January.
    4. Balamurugan Deivendran & Vishnu Swaroopji Masampally & Naga Ravikumar Varma Nadimpalli & Venkataramana Runkana, 2025. "Virtual metrology for chemical mechanical planarization of semiconductor wafers," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1923-1942, March.
    5. Abhilash Puthanveettil Madathil & Xichun Luo & Qi Liu & Charles Walker & Rajeshkumar Madarkar & Yukui Cai & Zhanqiang Liu & Wenlong Chang & Yi Qin, 2024. "Intrinsic and post-hoc XAI approaches for fingerprint identification and response prediction in smart manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4159-4180, December.
    6. Eduardo Oliveira & Vera L. Miguéis & José L. Borges, 2023. "Automatic root cause analysis in manufacturing: an overview & conceptualization," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2061-2078, June.
    7. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
    8. Chen Luo & Tingxiao Fan & Yan Xia & Yijun Zhou & Lei Jia & Baocheng Hui, 2025. "Deep learning-based conductive particle inspection for TFT-LCDs inspired by parametric space envelope," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 209-219, January.
    9. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    10. Joseph Cohen & Xun Huan & Jun Ni, 2024. "Shapley-based explainable AI for clustering applications in fault diagnosis and prognosis," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4071-4086, December.
    11. Kinkel, Steffen & Capestro, Mauro & Di Maria, Eleonora & Bettiol, Marco, 2023. "Artificial intelligence and relocation of production activities: An empirical cross-national study," International Journal of Production Economics, Elsevier, vol. 261(C).
    12. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Josue Obregon & Jae-Yoon Jung, 2024. "Rule-based visualization of faulty process conditions in the die-casting manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 521-537, February.
    14. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    15. Sheng Zhang & Xinyuan Xie & Haibin Qu, 2023. "A data-driven workflow for evaporation performance degradation analysis: a full-scale case study in the herbal medicine manufacturing industry," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 651-668, February.
    16. Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:2:d:10.1007_s10845-023-02297-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.