IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i3d10.1007_s10845-024-02335-0.html
   My bibliography  Save this article

Virtual metrology for chemical mechanical planarization of semiconductor wafers

Author

Listed:
  • Balamurugan Deivendran

    (TCS Research, Tata Consultancy Services Limited)

  • Vishnu Swaroopji Masampally

    (TCS Research, Tata Consultancy Services Limited)

  • Naga Ravikumar Varma Nadimpalli

    (TCS Research, Tata Consultancy Services Limited)

  • Venkataramana Runkana

    (TCS Research, Tata Consultancy Services Limited)

Abstract

Chemical mechanical planarization (CMP) is an important operation for surface modification of wafers in semiconductor manufacturing. Productivity and quality of wafers depends strongly on the efficiency of CMP and virtual metrology (VM) is a promising tool not only to facilitate wafer-to-wafer control but also to reduce cycle time. Development of VM tools for CMP is still not a reality due to the complexity of CMP and unavailability of critical process measurements such as slurry temperature and abrasive particle size distribution in real-time. To overcome these challenges, a novel hybrid modeling framework is proposed for creating a VM solution for CMP. Physics-based models are utilized for estimating slurry temperature and mean abrasive particle size (MAPS) from sensor data. They supplement other sensor data for developing soft sensors to predict slurry temperature, MAPS, and the material removal rate (MRR). This hybrid framework is tested with about 3000 sets of published industrial sensor data. Exploratory analysis indicated two distinct regimes of operation, low and high MRR, and a strong relationship of MRR with slurry temperature and MAPS. Several machine learning (ML) algorithms such as random forest, Lasso regression and support vector machine are explored and XGBoost is found to be the best amongst them. The optimum operating conditions are determined through model-based optimization using the hybrid modeling framework and particle swarm optimization. These results suggested CMP to be carried out at the smallest MAPS to maximize MRR. This framework would be useful for building a digital twin system of CMP.

Suggested Citation

  • Balamurugan Deivendran & Vishnu Swaroopji Masampally & Naga Ravikumar Varma Nadimpalli & Venkataramana Runkana, 2025. "Virtual metrology for chemical mechanical planarization of semiconductor wafers," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1923-1942, March.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02335-0
    DOI: 10.1007/s10845-024-02335-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02335-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02335-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helen Shen, 2014. "Interactive notebooks: Sharing the code," Nature, Nature, vol. 515(7525), pages 151-152, November.
    2. Helen Shen, 2014. "Interactive notebooks: Sharing the code," Nature, Nature, vol. 515(7525), pages 152-152, November.
    3. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
    4. Ki Bum Lee & Chang Ouk Kim, 2020. "Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 73-86, January.
    5. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian L Morgan & Omar A Saleh, 2021. "Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-18, December.
    2. Yrjö Lappalainen & Matti Lassila & Tanja Heikkilä & Jani Nieminen & Tapani Lehtilä, 2023. "Migrating 120,000 Legacy Publications from Several Systems into a Current Research Information System Using Advanced Data Wrangling Techniques," Publications, MDPI, vol. 11(4), pages 1-16, November.
    3. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    4. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    5. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    7. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    9. Philipp Fey & Daniel Ludwig Weber & Jannik Stebani & Philipp Mörchel & Peter Jakob & Jan Hansmann & Karl-Heinz Hiller & Daniel Haddad, 2023. "Non-destructive classification of unlabeled cells: Combining an automated benchtop magnetic resonance scanner and artificial intelligence," PLOS Computational Biology, Public Library of Science, vol. 19(2), pages 1-31, February.
    10. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Tianbiao Liang & Tianyuan Liu & Junliang Wang & Jie Zhang & Pai Zheng, 2025. "Causal deep learning for explainable vision-based quality inspection under visual interference," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1363-1384, February.
    13. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    14. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    16. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Pablo García-Risueño, 2025. "Historical Simulation Systematically Underestimates the Expected Shortfall," JRFM, MDPI, vol. 18(1), pages 1-12, January.
    18. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Ali Rezaei & Virág Kocsis-Jutka & Zeynep I. Gunes & Qing Zeng & Georg Kislinger & Franz Bauernschmitt & Huseyin Berkcan Isilgan & Laura R. Parisi & Tuğberk Kaya & Sören Franzenburg & Jonas Koppenbrink, 2025. "Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    20. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:3:d:10.1007_s10845-024-02335-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.