IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-022-02057-1.html
   My bibliography  Save this article

Rule-based visualization of faulty process conditions in the die-casting manufacturing

Author

Listed:
  • Josue Obregon

    (Kyung Hee University)

  • Jae-Yoon Jung

    (Kyung Hee University
    Kyung Hee University)

Abstract

Die-casting is a popular manufacturing process that produces precise metal parts with excellent dimensional accuracy and smooth cast surfaces. Recently die-casting process condition data can be acquired to be used as input for machine learning techniques for fault detection. The rapid development of complex and accurate machine learning algorithms, such as tree ensembles and deep learning, allows the accurate detection of faulty products. However, interpreting and explaining black-box models is crucial in the die-casting industry because the predictions provided by the machine learning solution can be adopted in practice only after understanding the internal decision mechanism of the model. To solve this problem, rule extraction methods generate simple rule-based predictive models from complex tree ensembles. Nevertheless, rulesets may contain numerous complex rules with redundant conditions, and the standard structure of rulesets does not clearly show the hierarchical relationships and frequent interactions among their elements. For this reason, in this study, a visualization tool based on formal concept analysis, called RuleLat (Rule Lattice), is proposed, which generates simple visual representations of rule-based classifiers. The generated models depict the hierarchical relationships of interactions among conditions, rules, and predicted classes in a modified concept lattice that is easy to analyze and understand. To demonstrate the applicability of the proposed method, a case study using real-world manufacturing data collected from a die-casting company in Korea is presented. RuleLat is adopted as a tool for interpretable machine learning, and the process conditions of three types of defects (porosity, material, and imprint) are analyzed and discussed.

Suggested Citation

  • Josue Obregon & Jae-Yoon Jung, 2024. "Rule-based visualization of faulty process conditions in the die-casting manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 521-537, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02057-1
    DOI: 10.1007/s10845-022-02057-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02057-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02057-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02057-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.