IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-022-02057-1.html
   My bibliography  Save this article

Rule-based visualization of faulty process conditions in the die-casting manufacturing

Author

Listed:
  • Josue Obregon

    (Kyung Hee University)

  • Jae-Yoon Jung

    (Kyung Hee University
    Kyung Hee University)

Abstract

Die-casting is a popular manufacturing process that produces precise metal parts with excellent dimensional accuracy and smooth cast surfaces. Recently die-casting process condition data can be acquired to be used as input for machine learning techniques for fault detection. The rapid development of complex and accurate machine learning algorithms, such as tree ensembles and deep learning, allows the accurate detection of faulty products. However, interpreting and explaining black-box models is crucial in the die-casting industry because the predictions provided by the machine learning solution can be adopted in practice only after understanding the internal decision mechanism of the model. To solve this problem, rule extraction methods generate simple rule-based predictive models from complex tree ensembles. Nevertheless, rulesets may contain numerous complex rules with redundant conditions, and the standard structure of rulesets does not clearly show the hierarchical relationships and frequent interactions among their elements. For this reason, in this study, a visualization tool based on formal concept analysis, called RuleLat (Rule Lattice), is proposed, which generates simple visual representations of rule-based classifiers. The generated models depict the hierarchical relationships of interactions among conditions, rules, and predicted classes in a modified concept lattice that is easy to analyze and understand. To demonstrate the applicability of the proposed method, a case study using real-world manufacturing data collected from a die-casting company in Korea is presented. RuleLat is adopted as a tool for interpretable machine learning, and the process conditions of three types of defects (porosity, material, and imprint) are analyzed and discussed.

Suggested Citation

  • Josue Obregon & Jae-Yoon Jung, 2024. "Rule-based visualization of faulty process conditions in the die-casting manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 521-537, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02057-1
    DOI: 10.1007/s10845-022-02057-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02057-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02057-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Gerling & Holger Ziekow & Andreas Hess & Ulf Schreier & Christian Seiffer & Djaffar Ould Abdeslam, 2022. "Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 555-573, February.
    2. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianbiao Liang & Tianyuan Liu & Junliang Wang & Jie Zhang & Pai Zheng, 2025. "Causal deep learning for explainable vision-based quality inspection under visual interference," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1363-1384, February.
    2. Karim Nadim & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Data-driven dynamic causality analysis of industrial systems using interpretable machine learning and process mining," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 57-83, January.
    3. Eduardo Oliveira & Vera L. Miguéis & José L. Borges, 2023. "Automatic root cause analysis in manufacturing: an overview & conceptualization," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2061-2078, June.
    4. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    6. Sheng Zhang & Xinyuan Xie & Haibin Qu, 2023. "A data-driven workflow for evaporation performance degradation analysis: a full-scale case study in the herbal medicine manufacturing industry," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 651-668, February.
    7. Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.
    8. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    9. Balamurugan Deivendran & Vishnu Swaroopji Masampally & Naga Ravikumar Varma Nadimpalli & Venkataramana Runkana, 2025. "Virtual metrology for chemical mechanical planarization of semiconductor wafers," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1923-1942, March.
    10. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
    11. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    12. Kinkel, Steffen & Capestro, Mauro & Di Maria, Eleonora & Bettiol, Marco, 2023. "Artificial intelligence and relocation of production activities: An empirical cross-national study," International Journal of Production Economics, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02057-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.