IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i6d10.1007_s10845-023-02177-2.html
   My bibliography  Save this article

Equipment electrocardiogram (EECG): making intelligent production line more robust

Author

Listed:
  • Baotong Chen

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Lei Wang

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Shujun Yu

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Jiafu Wan

    (South China University of Technology
    South China University of Technology)

  • Xuhui Xia

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

Abstract

The simultaneous regulation of production efficiency and equipment maintenance in intelligent production lines poses a challenging problem. Existing approaches addressing this issue often separate the regulation of equipment maintenance and load balancing, lacking dynamic indicators to characterize the operational status and equipment workload. Inspired by the cardiac electrical activity recorded from human electrocardiogram (ECG), the electric drive signal of the equipment is proposed as an analogous measure to monitor equipment performance and workload variations. Thereby, the implementation mechanism and working characteristics of equipment ECG (EECG) are put forward for reconfigurable mixed-model assembly. Moreover, the monitoring of equipment performance based on deep learning is explored, leveraging the EECG features combined with multi-source heterogeneous data. The variations of equipment workload are tracked through the construction of a population difference hash analysis of the ECG data flow, along with the characterization of equipment power through electric signals. Additionally, an EECG-driven synchronous mapping approach is proposed to address steady disturbance, considering both workload imbalance and the degeneracy effect of the equipment. The reconfigurability of the intelligent production line enables the proposed mechanism of similarity matching of EECG features through the reconfiguration of the software manufacturing system and hardware physical equipment. Finally, the EECG-based solution is validated on a laboratory-level prototype platform, demonstrating that the robust running of the assembly process can be ensured even in the presence of internal and external disturbances.

Suggested Citation

  • Baotong Chen & Lei Wang & Shujun Yu & Jiafu Wan & Xuhui Xia, 2024. "Equipment electrocardiogram (EECG): making intelligent production line more robust," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2867-2886, August.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02177-2
    DOI: 10.1007/s10845-023-02177-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02177-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02177-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shiyong Wang & Jiafu Wan & Di Li & Chunhua Zhang, 2016. "Implementing Smart Factory of Industrie 4.0: An Outlook," International Journal of Distributed Sensor Networks, , vol. 12(1), pages 3159805-315, January.
    2. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    3. Qiuzhuang Sun & Zhi-Sheng Ye & Xiaoyan Zhu, 2020. "Managing component degradation in series systems for balancing degradation through reallocation and maintenance," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 797-810, July.
    4. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    5. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    3. Jamal El Baz & Anass Cherrafi & Abla Chaouni Benabdellah & Kamar Zekhnini & Jean Noel Beka Be Nguema & Ridha Derrouiche, 2023. "Environmental Supply Chain Risk Management for Industry 4.0: A Data Mining Framework and Research Agenda," Post-Print hal-04335003, HAL.
    4. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    5. Runze Liu & Qi Jia & Hui Yu & Kaizhou Gao & Yaping Fu & Li Yin, 2025. "Bi-Objective Integrated Scheduling of Job Shop Problems and Material Handling Robots with Setup Time," Mathematics, MDPI, vol. 13(3), pages 1-33, January.
    6. Izaz Raouf & Asif Khan & Salman Khalid & Muhammad Sohail & Muhammad Muzammil Azad & Heung Soo Kim, 2022. "Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey," Mathematics, MDPI, vol. 10(18), pages 1-26, September.
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Fu, Yuqiang & Wang, Jun & Peng, Rui & Yang, Lechang & Meng, Xiaoyang, 2024. "Random-time component reallocation and system replacement policy with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Masood Fathi & Amir Nourmohammadi & Morteza Ghobakhloo & Milad Yousefi, 2020. "Production Sustainability via Supermarket Location Optimization in Assembly Lines," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    11. Wang, Jun & Fu, Yuqiang & Zhou, Jian & Yang, Lechang & Yang, Yating, 2025. "Condition-based maintenance for redundant systems considering spare inventory with stochastic lead time," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    12. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    13. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Vaibhav S. Narwane & Rakesh D. Raut & Sachin Kumar Mangla & Bhaskar B. Gardas & Balkrishna E. Narkhede & Anjali Awasthi & Pragati Priyadarshinee, 2023. "Mediating role of cloud of things in improving performance of small and medium enterprises in the Indian context," Annals of Operations Research, Springer, vol. 329(1), pages 69-98, October.
    15. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    16. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    17. Julian Tiedtke, 2025. "Automation, Firm Size and Skill Groups," LEM Papers Series 2025/09, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Fu, Yuqiang & Wang, Jun, 2022. "Optimum periodic maintenance policy of repairable multi-component system with component reallocation and system overhaul," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:6:d:10.1007_s10845-023-02177-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.