IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i5d10.1007_s10845-023-02152-x.html
   My bibliography  Save this article

Fine-grained activity classification in assembly based on multi-visual modalities

Author

Listed:
  • Haodong Chen

    (Missouri University of Science and Technology)

  • Niloofar Zendehdel

    (Missouri University of Science and Technology)

  • Ming C. Leu

    (Missouri University of Science and Technology)

  • Zhaozheng Yin

    (Stony Brook University)

Abstract

Assembly activity recognition and prediction help to improve productivity, quality control, and safety measures in smart factories. This study aims to sense, recognize, and predict a worker's continuous fine-grained assembly activities in a manufacturing platform. We propose a two-stage network for workers' fine-grained activity classification by leveraging scene-level and temporal-level activity features. The first stage is a feature awareness block that extracts scene-level features from multi-visual modalities, including red–green–blue (RGB) and hand skeleton frames. We use the transfer learning method in the first stage and compare three different pre-trained feature extraction models. Then, we transmit the feature information from the first stage to the second stage to learn the temporal-level features of activities. The second stage consists of the Recurrent Neural Network (RNN) layers and a final classifier. We compare the performance of two different RNNs in the second stage, including the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU). The partial video observation method is used in the prediction of fine-grained activities. In the experiments using the trimmed activity videos, our model achieves an accuracy of > 99% on our dataset and > 98% on the public dataset UCF 101, outperforming the state-of-the-art models. The prediction model achieves an accuracy of > 97% in predicting activity labels using 50% of the onset activity video information. In the experiments using an untrimmed video with continuous assembly activities, we combine our recognition and prediction models and achieve an accuracy of > 91% in real time, surpassing the state-of-the-art models for the recognition of continuous assembly activities.

Suggested Citation

  • Haodong Chen & Niloofar Zendehdel & Ming C. Leu & Zhaozheng Yin, 2024. "Fine-grained activity classification in assembly based on multi-visual modalities," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2215-2233, June.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02152-x
    DOI: 10.1007/s10845-023-02152-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02152-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02152-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Don J. Rude & Stephen Adams & Peter A. Beling, 2018. "Task recognition from joint tracking data in an operational manufacturing cell," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1203-1217, August.
    2. Ting Zheng & Marco Ardolino & Andrea Bacchetti & Marco Perona, 2021. "The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1922-1954, March.
    3. Zheng, Ting & Ardolino, Marco & Bacchetti, Andrea & Perona, Marco, 2021. "The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 129469, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Barkat Ullah & Muhammad Kamran & Yichao Rui, 2022. "Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost," Mathematics, MDPI, vol. 10(3), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juhás Martin & Juhásová Bohuslava & Nemlaha Eduard & Charvát Dominik, 2021. "Increasing the Efficiency of a Robotic Cell Using Simulation," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 29(49), pages 24-35, September.
    2. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
    4. Mahdi Mokhtarzadeh & Jorge Rodríguez-Echeverría & Ivana Semanjski & Sidharta Gautama, 2025. "Hybrid intelligence failure analysis for industry 4.0: a literature review and future prospective," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2309-2334, April.
    5. Moazzeni, Sahar & Sgarbossa, Fabio, 2025. "Collaborative logistics and digital technologies in rural contexts: a systematic review and a decision aid model for logistics decision-makers," Discussion Papers 2025/12, Norwegian School of Economics, Department of Business and Management Science.
    6. Luo, Shiyue & Yu, Mengyao & Dong, Yilan & Hao, Yu & Li, Changping & Wu, Haitao, 2024. "Toward urban high-quality development: Evidence from more intelligent Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    7. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.
    8. Bettiol, Marco & Capestro, Mauro & Di Maria, Eleonora & Ganau, Roberto, 2024. "Is this time different?: how Industry 4.0 affects firms' labor productivity," LSE Research Online Documents on Economics 124545, London School of Economics and Political Science, LSE Library.
    9. Piccarozzi, Michela & Silvestri, Luca & Silvestri, Cecilia & Ruggieri, Alessandro, 2024. "Roadmap to Industry 5.0: Enabling technologies, challenges, and opportunities towards a holistic definition in management studies," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    10. Alok Raj & Anand Jeyaraj, 2023. "Antecedents and consequents of industry 4.0 adoption using technology, organization and environment (TOE) framework: A meta-analysis," Annals of Operations Research, Springer, vol. 322(1), pages 101-124, March.
    11. Somohano-Rodríguez, Francisco M. & Madrid-Guijarro, Antonia, 2022. "Do industry 4.0 technologies improve Cantabrian manufacturing smes performance? The role played by industry competition," Technology in Society, Elsevier, vol. 70(C).
    12. Marco Bettiol & Mauro Capestro & Eleonora Di Maria & Roberto Ganau, 2024. "Is this time different? How Industry 4.0 affects firms’ labor productivity," Small Business Economics, Springer, vol. 62(4), pages 1449-1467, April.
    13. Rodríguez-Espíndola, Oscar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel & Emrouznejad, Ali, 2022. "Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    14. Andrew Wear, 2023. "Emergent concepts in local economic development," Local Economy, London South Bank University, vol. 38(8), pages 804-826, December.
    15. Anbesh Jamwal & Rajeev Agrawal & Monica Sharma, 2025. "Developing a maturity model for Industry 4.0 practices in manufacturing SMEs," Operations Management Research, Springer, vol. 18(1), pages 111-143, March.
    16. Saumyaranjan Sahoo & Satish Kumar & Uthayasankar Sivarajah & Weng Marc Lim & J. Christopher Westland & Ashwani Kumar, 2024. "Blockchain for sustainable supply chain management: trends and ways forward," Electronic Commerce Research, Springer, vol. 24(3), pages 1563-1618, September.
    17. An, Hongda & Galera-Zarco, Carlos, 2025. "Tackling food waste and loss through digitalization in the food supply chain: A systematic review and framework development," Technological Forecasting and Social Change, Elsevier, vol. 217(C).
    18. Anlan Chen & Yong Lin & Marcello Mariani & Yongyi Shou & Yufeng Zhang, 2023. "Entrepreneurial growth in digital business ecosystems: an integrated framework blending the knowledge-based view of the firm and business ecosystems," The Journal of Technology Transfer, Springer, vol. 48(5), pages 1628-1653, October.
    19. Benjamin James Ralph & Marcel Sorger & Karin Hartl & Andreas Schwarz-Gsaxner & Florian Messner & Martin Stockinger, 2022. "Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 493-518, February.
    20. Battaglia, Daniele & Galati, Francesco & Molinaro, Margherita & Pessot, Elena, 2023. "Full, hybrid and platform complementarity: Exploring the industry 4.0 technology-performance link," International Journal of Production Economics, Elsevier, vol. 263(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:5:d:10.1007_s10845-023-02152-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.