IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i3d10.1007_s10845-022-02072-2.html
   My bibliography  Save this article

Research on digital twin monitoring system for large complex surface machining

Author

Listed:
  • Tian-Feng Qi

    (Beijing Jiaotong University)

  • Hai-Rong Fang

    (Beijing Jiaotong University)

  • Yu-Fei Chen

    (Beijing Jiaotong University)

  • Li-Tao He

    (Beijing Jiaotong University)

Abstract

With the rapid development of aerospace, the large complex curved workpiece is widely used. However, the lack of digital monitoring and detection in the current manufacturing process leads to the low efficiency of the parts produced and processed, and quality consistency cannot be guaranteed. Aiming at the problems of low degree of virtual visualization and insufficient monitoring ability of large complex surface machining, a framework of large complex surface machining monitoring system based on digital twin technology was proposed. The digital research of intelligent processing monitoring system is carried out from six dimensions. By studying the key technologies of virtual twin model construction, multi-source data acquisition and transmission, and virtual-real mapping relationship construction, a digital twin monitoring system for large complex surface machining is developed. Finally, the feasibility and effectiveness of the twin system are verified by a real scene, and it provides a reference for monitoring the machining process of large complex curved workpieces.

Suggested Citation

  • Tian-Feng Qi & Hai-Rong Fang & Yu-Fei Chen & Li-Tao He, 2024. "Research on digital twin monitoring system for large complex surface machining," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 977-990, March.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-022-02072-2
    DOI: 10.1007/s10845-022-02072-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02072-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02072-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaurav Garg & Vladimir Kuts & Gholamreza Anbarjafari, 2021. "Digital Twin for FANUC Robots: Industrial Robot Programming and Simulation Using Virtual Reality," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    2. Fei Tao & Fangyuan Sui & Ang Liu & Qinglin Qi & Meng Zhang & Boyang Song & Zirong Guo & Stephen C.-Y. Lu & A. Y. C. Nee, 2019. "Digital twin-driven product design framework," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3935-3953, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amelio, Andrea & Giardino-Karlinger, Liliane & Valletti, Tommaso, 2020. "Exclusionary pricing in two-sided markets," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    2. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    3. F. H. Abanda & N. Jian & S. Adukpo & V. V. Tuhaise & M. B. Manjia, 2025. "Digital twin for product versus project lifecycles’ development in manufacturing and construction industries," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 801-831, February.
    4. Konstantinos Mykoniatis & Gregory A. Harris, 2021. "A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1899-1911, October.
    5. Yimeng Jin & Fei Hu & Jin Qi, 2022. "Multidimensional Characteristics and Construction of Classification Model of Prosumers," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    6. Konstantinos Siassiakos & Stamatia Ilioudi & Tsaktsira Effrosyni & Vasiliki Mitsiou & Dimitris Nanouris, 2020. "Utilization of Blockchain Technology in Greek Public Administration," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 10(4), pages 1-12.
    7. Angenendt, Georg & Merten, Michael & Zurmühlen, Sebastian & Sauer, Dirk Uwe, 2020. "Evaluation of the effects of frequency restoration reserves market participation with photovoltaic battery energy storage systems and power-to-heat coupling," Applied Energy, Elsevier, vol. 260(C).
    8. Maciej Niemir & Beata Mrugalska, 2021. "Basic Product Data in E-Commerce: Specifications and Problems of Data Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 317-329.
    9. Monahan, Lisa & Espinosa, Jennifer A. & Langenderfer, Jeff & Ortinau, David J., 2023. "Did you hear our brand is hated? The unexpected upside of hate-acknowledging advertising for polarizing brands," Journal of Business Research, Elsevier, vol. 154(C).
    10. Muhammad Hassan & Marcus Svadling & Niclas Björsell, 2024. "Experience from implementing digital twins for maintenance in industrial processes," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 875-884, February.
    11. World Bank, 2020. "Nepal Development Update, July 2020," World Bank Publications - Reports 34178, The World Bank Group.
    12. Lena Ries & Markus Beckmann & Peter Wehnert, 2023. "Sustainable smart product-service systems: a causal logic framework for impact design," Journal of Business Economics, Springer, vol. 93(4), pages 667-706, May.
    13. Sohaib S. Hassan & Konrad Meisner & Kevin Krause & Levan Bzhalava & Petra Moog, 2024. "Is digitalization a source of innovation? Exploring the role of digital diffusion in SME innovation performance," Small Business Economics, Springer, vol. 62(4), pages 1469-1491, April.
    14. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Viveiro, José Augusto & Mello, Adriana & Soto, Jorge, 2020. "Polímeros Verdes: tecnologia para promoção do desenvolvimento sustentável," Documentos de Proyectos 45590, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    16. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    17. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.
    18. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Fadi Assad & Emma J. Rushforth & Robert Harrison, 2025. "A component-based design approach for energy flexibility in cyber-physical manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 975-1001, February.
    20. Bazi, Saleh & Filieri, Raffaele & Gorton, Matthew, 2023. "Social media content aesthetic quality and customer engagement: The mediating role of entertainment and impacts on brand love and loyalty," Journal of Business Research, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:3:d:10.1007_s10845-022-02072-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.