IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-022-02064-2.html
   My bibliography  Save this article

A novel micro-defect classification system based on attention enhancement

Author

Listed:
  • Song Lin

    (Harbin Institute of Technology)

  • Zhiyong He

    (Harbin Institute of Technology
    Soochow University)

  • Lining Sun

    (Harbin Institute of Technology)

Abstract

A surface micro-defect is characterized by a small size and a susceptibility to noise. Micro-defect detection and classification is very challenging. This paper proposes a Micro-defect classification system based on attention enhancement (MDCS) for solving the detection and classification of micro-defects. We combine defect detection with defect classification in MDSC. Micro-defects classification can be better realized based on the auxiliary task of defect detection. In this system, the aim of attention formation in bionic vision is to guide the system to focus on the target by zooming in and out on micro-defects. To avoid noise interference, an attention module based on trilinear feature confluence has been incorporated. Last but not least, the enhancement process based on the attention map improves the classification ability of micro-defects. As part of comparative experiment, we analyzed data including 19,200 fabric images and 4,800 bamboo images. In the micro-defect classification experiment based on MDCS(ResNet-50), the accuracy of fabric data and bamboo data is 88.2% and 89.4% respectively. Compared with ResNet-50, the classification accuracy (64.8%, 67.7%) is improved by 23.4% and 21.7% respectively. In the object detection experiment of micro-defects based on MDCS (ResNet-50), the accuracy of fabric data and bamboo data is 65.1% mAPs and 63.3% mAPs respectively. Compared with HRDNet, the detection accuracy (59.6% mAPs, 52.2% mAPs) is improved by 5.5% mAPs and 11.1% mAPs respectively. Experimental results demonstrate that the proposed system can counteract the interference caused by noise in small object detection, localize micro-defects accurately, and improve micro-defect classification accuracy significantly.

Suggested Citation

  • Song Lin & Zhiyong He & Lining Sun, 2024. "A novel micro-defect classification system based on attention enhancement," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 703-726, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02064-2
    DOI: 10.1007/s10845-022-02064-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02064-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02064-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Cheng & Hai Wang & Vladimir Stojanovic & Fei Liu & Shuping He & Kaibo Shi, 2022. "Dissipativity-based finite-time asynchronous output feedback control for wind turbine system via a hidden Markov model," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(15), pages 3177-3189, November.
    2. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    3. Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuanlong Niu & Yaru Peng & Bin Li & Yuanhong Qiu & Tongzhi Niu & Weifeng Li, 2024. "A novel deep learning motivated data augmentation system based on defect segmentation requirements," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 687-701, February.
    2. Ruining Tang & Zhenyu Liu & Yiguo Song & Guifang Duan & Jianrong Tan, 2024. "Hierarchical multi-scale network for cross-scale visual defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1141-1157, March.
    3. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2022. "A mem-element Wien-Bridge circuit with amplitude modulation and three kinds of offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Hyunmin Park & Yun Seok Kang & Seung-Kyum Choi & Hyung Wook Park, 2025. "Quality evaluation modeling of a DED-processed metallic deposition based on ResNet-50 with few training data," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2677-2693, April.
    5. Jr-Fong Dang, 2024. "The multisensor information fusion-based deep learning model for equipment health monitor integrating subject matter expert knowledge," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4055-4069, December.
    6. Ping Chen & Mingfang Chen & Sen Wang & Yanjin Song & Yu Cui & Zhongping Chen & Yongxia Zhang & Songlin Chen & Xiang Mo, 2024. "Real-time defect detection of TFT-LCD displays using a lightweight network architecture," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1337-1352, March.
    7. Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
    8. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    9. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
    11. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
    12. Peng Zhan & Shaokun Wang & Jun Wang & Leigang Qu & Kun Wang & Yupeng Hu & Xueqing Li, 2021. "Temporal anomaly detection on IIoT-enabled manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1669-1678, August.
    13. Zhiqiang Wang & Kenneth Ezukwoke & Anis Hoayek & Mireille Batton-Hubert & Xavier Boucher, 2025. "Natural language processing (NLP) and association rules (AR)-based knowledge extraction for intelligent fault analysis: a case study in semiconductor industry," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 357-372, January.
    14. Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.
    15. John Taco & Pradeep Kundu & Jay Lee, 2024. "A novel technique for multiple failure modes classification based on deep forest algorithm," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3115-3129, October.
    16. Kanjanapon Borisoot & Rittichai Liemthong & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Energy Management for Virtual Power Plant Considering Operation and Degradation Costs of Energy Storage System and Generators," Energies, MDPI, vol. 16(6), pages 1-19, March.
    17. Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
    18. Feng, Zhiguang & Feng, Bo & Zhang, Naifu, 2023. "Fuzzy-based asynchronous controller design on reachable set synthesis of nonlinear hidden Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Jinwoo Song & Prashant Kumar & Yonghawn Kim & Heung Soo Kim, 2024. "A Fault Detection System for Wiring Harness Manufacturing Using Artificial Intelligence," Mathematics, MDPI, vol. 12(4), pages 1-17, February.
    20. Chien-Chih Wang & Yi-Ying Yang, 2023. "A Machine Learning Approach for Improving Wafer Acceptance Testing Based on an Analysis of Station and Equipment Combinations," Mathematics, MDPI, vol. 11(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02064-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.