IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i8d10.1007_s10845-020-01545-6.html
   My bibliography  Save this article

Towards an automated decision support system for the identification of additive manufacturing part candidates

Author

Listed:
  • Sheng Yang

    (McGill University)

  • Thomas Page

    (McGill University)

  • Ying Zhang

    (McGill University)

  • Yaoyao Fiona Zhao

    (McGill University)

Abstract

As additive manufacturing (AM) continues to mature, an efficient and effective method to identify parts which are eligible for AM as well as gaining insight on what values it may add to a product is needed. Prior methods are naturally developed and highly experience-dependent, which falls short for its objectiveness and transferability. In this paper, a decision support system (DSS) framework for automatically determining the candidacy of a part or assembly for AM applications is proposed based on machine learning (ML) and carefully selected candidacy criteria. With the goal of supporting efficient candidate screening in the early conceptual design stage, these criteria are further individually decoded to decisive parameters which can be extracted from digital models or resource planning databases. Over 200 existing industrial examples are manually collected and labelled as training data; meanwhile, multiple regression algorithms are tested against each AM potential to find better predictive performance. The proposed DSS framework is implemented as a web application with integrated cloud-based database and ML service, which allows advantages of easy maintenance, upgrade, and retraining of ML models. Two case studies of a hip implant and a throttle pedal are used as demonstrating examples. This preliminary work provides a promising solution for lowering the requirements of non-AM experts to find suitable AM candidates.

Suggested Citation

  • Sheng Yang & Thomas Page & Ying Zhang & Yaoyao Fiona Zhao, 2020. "Towards an automated decision support system for the identification of additive manufacturing part candidates," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1917-1933, December.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01545-6
    DOI: 10.1007/s10845-020-01545-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01545-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01545-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bogers, Marcel & Hadar, Ronen & Bilberg, Arne, 2016. "Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 225-239.
    2. Martin Baumers & Chris Tuck & Ricky Wildman & Ian Ashcroft & Richard Hague, 2017. "Shape Complexity and Process Energy Consumption in Electron Beam Melting: A Case of Something for Nothing in Additive Manufacturing?," Journal of Industrial Ecology, Yale University, vol. 21(S1), pages 157-167, November.
    3. Zoran Jurkovic & Goran Cukor & Miran Brezocnik & Tomislav Brajkovic, 2018. "A comparison of machine learning methods for cutting parameters prediction in high speed turning process," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1683-1693, December.
    4. Wen-An Yang, 2016. "Simultaneous monitoring of mean vector and covariance matrix shifts in bivariate manufacturing processes using hybrid ensemble learning-based model," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 845-874, August.
    5. Knofius, N. & van der Heijden, M.C. & Zijm, W.H.M., 2019. "Consolidating spare parts for asset maintenance with additive manufacturing," International Journal of Production Economics, Elsevier, vol. 208(C), pages 269-280.
    6. Florinda Matos & Radu Godina & Celeste Jacinto & Helena Carvalho & Inês Ribeiro & Paulo Peças, 2019. "Additive Manufacturing: Exploring the Social Changes and Impacts," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    2. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    3. Brylowski, Martin & Schwieger, Lea-Sophie & Nagi, Ayman & Kersten, Wolfgang, 2021. "How to apply artificial intelligence in the additive value chain: A systematic literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 65-100, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Foshammer, Jeppe & Søberg, Peder Veng & Helo, Petri & Ituarte, Iñigo Flores, 2022. "Identification of aftermarket and legacy parts suitable for additive manufacturing: A knowledge management-based approach," International Journal of Production Economics, Elsevier, vol. 253(C).
    5. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    6. Jose M. Framinan & Paz Perez-Gonzalez & Victor Fernandez-Viagas, 2023. "An overview on the use of operations research in additive manufacturing," Annals of Operations Research, Springer, vol. 322(1), pages 5-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    3. Caviggioli, Federico & Ughetto, Elisa, 2019. "A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society," International Journal of Production Economics, Elsevier, vol. 208(C), pages 254-268.
    4. Jimo, Ajeseun & Braziotis, Christos & Rogers, Helen & Pawar, Kulwant, 2022. "Additive manufacturing: A framework for supply chain configuration," International Journal of Production Economics, Elsevier, vol. 253(C).
    5. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    6. Luis Isasi-Sanchez & Jesus Morcillo-Bellido & Jose Ignacio Ortiz-Gonzalez & Alfonso Duran-Heras, 2020. "Synergic Sustainability Implications of Additive Manufacturing in Automotive Spare Parts: A Case Analysis," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    7. Radu Godina & Inês Ribeiro & Florinda Matos & Bruna T. Ferreira & Helena Carvalho & Paulo Peças, 2020. "Impact Assessment of Additive Manufacturing on Sustainable Business Models in Industry 4.0 Context," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    8. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    9. Beltagui, Ahmad & Kunz, Nathan & Gold, Stefan, 2020. "The role of 3D printing and open design on adoption of socially sustainable supply chain innovation," International Journal of Production Economics, Elsevier, vol. 221(C).
    10. Altekin, F. Tevhide & Bukchin, Yossi, 2022. "A multi-objective optimization approach for exploring the cost and makespan trade-off in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 235-253.
    11. Florinda Matos & Radu Godina & Celeste Jacinto & Helena Carvalho & Inês Ribeiro & Paulo Peças, 2019. "Additive Manufacturing: Exploring the Social Changes and Impacts," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    12. Lamghari-Idrissi, Douniel & Basten, Rob & van Houtum, Geert-Jan, 2020. "Spare parts inventory control under a fixed-term contract with a long-down constraint," International Journal of Production Economics, Elsevier, vol. 219(C), pages 123-137.
    13. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    14. Jaya Priyadarshini & Rajesh Kr Singh & Ruchi Mishra & Surajit Bag, 2022. "Investigating the interaction of factors for implementing additive manufacturing to build an antifragile supply chain: TISM-MICMAC approach," Operations Management Research, Springer, vol. 15(1), pages 567-588, June.
    15. Beltagui, Ahmad & Gold, Stefan & Kunz, Nathan & Reiner, Gerald, 2023. "Special Issue: Rethinking operations and supply chain management in light of the 3D printing revolution," International Journal of Production Economics, Elsevier, vol. 255(C).
    16. Eleonora Di Maria & Valentina De Marchi & Ambra Galeazzo, 2022. "Industry 4.0 technologies and circular economy: The mediating role of supply chain integration," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 619-632, February.
    17. Wang, Shuai & Ma, Shuang, 2023. "Is product customization always beneficial in the context of C2M platforms? A signaling theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    18. Caputo, Andrea & Pizzi, Simone & Pellegrini, Massimiliano M. & Dabić, Marina, 2021. "Digitalization and business models: Where are we going? A science map of the field," Journal of Business Research, Elsevier, vol. 123(C), pages 489-501.
    19. Shivam Gupta & Sachin Modgil & Piera Centobelli & Roberto Cerchione & Serena Strazzullo, 2022. "Additive Manufacturing and Green Information Systems as Technological Capabilities for Firm Performance," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 515-534, December.
    20. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01545-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.