IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01513-9.html
   My bibliography  Save this article

A failure mode and risk assessment method based on cloud model

Author

Listed:
  • Xinlong Li

    (Chongqing University)

  • Yan Ran

    (Chongqing University)

  • Genbao Zhang

    (Chongqing University
    Chongqing University of Arts and Sciences)

  • Yan He

    (Chongqing University)

Abstract

Failure mode and effects analysis (FMEA) is a predictive reliability analysis technique, which is widely used to improve the reliability and safety of products in products design, manufacture and service phases. However, traditional FMEA has many shortcomings in practical application, resulting in poor accuracy of analysis results. In this paper, based on meta-action failure modes, a risk assessment and ranking method based on cloud model is proposed. First, the domain expert’s assessment of failure modes’ attributes is transformed into a cloud model. Then, the best–worst method (BWM) and cloud model are combined to calculate the cloud weight of each attribute, and the weight of each expert to risk factors of each failure mode is evaluated by cloud distance. Finally, the comprehensive cloud expression of each failure mode is synthesized and compared. The proposed evaluation method not only has the advantages of cloud model in dealing with fuzziness and randomness, but also integrates the advantages of BWM, and fully takes into account the differences of experts in assigning weights to different failure modes’ attributes. Finally, the effectiveness of the proposed method is verified by comparing the risk assessment results of the CNC machine tool’s rotation-meta-action failure modes with different risk assessment methods.

Suggested Citation

  • Xinlong Li & Yan Ran & Genbao Zhang & Yan He, 2020. "A failure mode and risk assessment method based on cloud model," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1339-1352, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01513-9
    DOI: 10.1007/s10845-019-01513-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01513-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01513-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Li & Wei Zeng, 2016. "Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA)," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1309-1321, December.
    2. Majid Baghery & Samuel Yousefi & Mustafa Jahangoshai Rezaee, 2018. "Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1803-1825, December.
    3. Seyedmohsen Hosseini & Abdullah Al Khaled, 2019. "A hybrid ensemble and AHP approach for resilient supplier selection," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 207-228, January.
    4. Hossein Safari & Zahra Faraji & Setareh Majidian, 2016. "Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 475-486, April.
    5. Lei Dong & Peng Wang & Fang Yan, 2019. "Damage forecasting based on multi-factor fuzzy time series and cloud model," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 521-538, February.
    6. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Antomarioni & Marjorie Maria Bellinello & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Renan Favarão da Silva & Gilberto Francisco Martha de Souza, 2020. "A Data-Driven Approach to Extend Failure Analysis: A Framework Development and a Case Study on a Hydroelectric Power Plant," Energies, MDPI, vol. 13(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Huang & Hu-Chen Liu & Chun-Yan Duan & Ming-Shun Song, 2022. "An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method," Annals of Operations Research, Springer, vol. 312(1), pages 235-258, May.
    2. Linlin Liu & Dongming Fan & Zili Wang & Dezhen Yang & Jingjing Cui & Xinrui Ma & Yi Ren, 2019. "Enhanced GO methodology to support failure mode, effects and criticality analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1451-1468, March.
    3. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    4. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    6. María Carmen Carnero, 2020. "Waste Segregation FMEA Model Integrating Intuitionistic Fuzzy Set and the PAPRIKA Method," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    7. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    8. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    10. Fangzhong Qi & Leilei Zhang & Kexiang Zhuo & Xiuyan Ma, 2022. "Early Warning for Manufacturing Supply Chain Resilience Based on Improved Grey Prediction Model," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    11. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    12. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    13. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    14. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.
    15. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang, 2023. "Sustainable Evaluation of Major Third-Party Logistics Providers: A Framework of an MCDM-Based Entropy Objective Weighting Method," Mathematics, MDPI, vol. 11(19), pages 1-27, October.
    16. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    17. Rajiv Kumar Sharma, 2022. "Examining interaction among supplier selection strategies in an outsourcing environment using ISM and fuzzy logic approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2175-2194, October.
    18. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    19. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    20. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01513-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.