IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v31y2025i1d10.1007_s10732-024-09544-z.html
   My bibliography  Save this article

Evolutionary optimization of the area under precision-recall curve for classifying imbalanced multi-class data

Author

Listed:
  • Marwa Chabbouh

    (University of Tunis)

  • Slim Bechikh

    (University of Tunis)

  • Efrén Mezura-Montes

    (University of Veracruz)

  • Lamjed Ben Said

    (University of Tunis)

Abstract

Classification of imbalanced multi-class data is still so far one of the most challenging issues in machine learning and data mining. This task becomes more serious when classes containing fewer instances are located in overlapping regions. Several approaches have been proposed through the literature to deal with these two issues such as the use of decomposition, the design of ensembles, the employment of misclassification costs, and the development of ad-hoc strategies. Despite these efforts, the number of existing works dealing with the imbalance in multi-class data is much reduced compared to the case of binary classification. Moreover, existing approaches still suffer from many limits. These limitations include difficulties in handling imbalances across multiple classes, challenges in adapting sampling techniques, limitations of certain classifiers, the need for specialized evaluation metrics, the complexity of data representation, and increased computational costs. Motivated by these observations, we propose a multi-objective evolutionary induction approach that evolves a population of NLM-DTs (Non-Linear Multivariate Decision Trees) using the $$\theta $$ θ -NSGA-III ( $$\theta $$ θ -Non-dominated Sorting Genetic Algorithm-III) as a search engine. The resulting algorithm is termed EMO-NLM-DT (Evolutionary Multi-objective Optimization of NLM-DTs) and is designed to optimize the construction of NLM-DTs for imbalanced multi-class data classification by simultaneously maximizing both the Macro-Average-Precision and the Macro-Average-Recall as two possibly conflicting objectives. The choice of these two measures as objective functions is motivated by a recent study on the appropriateness of performance metrics for imbalanced data classification, which suggests that the mAURPC (mean Area Under Recall Precision Curve) satisfies all necessary conditions for imbalanced multi-class classification. Moreover, the NLM-DT adoption as a baseline classifier to be optimized allows the generation non-linear hyperplanes that are well-adapted to the classes ‘boundaries’ geometrical shapes. The statistical analysis of the comparative experimental results on more than twenty imbalanced multi-class data sets reveals the outperformance of EMO-NLM-DT in building NLM-DTs that are highly effective in classifying imbalanced multi-class data compared to seven relevant and recent state-of-the-art methods.

Suggested Citation

  • Marwa Chabbouh & Slim Bechikh & Efrén Mezura-Montes & Lamjed Ben Said, 2025. "Evolutionary optimization of the area under precision-recall curve for classifying imbalanced multi-class data," Journal of Heuristics, Springer, vol. 31(1), pages 1-66, March.
  • Handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09544-z
    DOI: 10.1007/s10732-024-09544-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-024-09544-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-024-09544-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    3. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    4. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    5. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    6. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    7. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    8. Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
    9. Dorian Knoblauch & Jürgen Großmann, 2023. "Towards a Risk-Based Continuous Auditing-Based Certification for Machine Learning," The Review of Socionetwork Strategies, Springer, vol. 17(2), pages 255-273, October.
    10. Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
    11. Dueñas, Marco & Ortiz, Víctor & Riccaboni, Massimo & Serti, Francesco, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Working papers 79, Red Investigadores de Economía.
    12. Wei-Hsuan Lo-Ciganic & Julie M Donohue & Eric G Hulsey & Susan Barnes & Yuan Li & Courtney C Kuza & Qingnan Yang & Jeanine Buchanich & James L Huang & Christina Mair & Debbie L Wilson & Walid F Gellad, 2021. "Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    13. Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
    14. Ali J. Ghandour & Huda Hammoud & Samar Al-Hajj, 2020. "Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    15. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    16. Soumadeep Saha & Utpal Garain & Arijit Ukil & Arpan Pal & Sundeep Khandelwal, 2023. "MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-19, August.
    17. Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.
    18. Abouelmagd THM, 2018. "A New Flexible Distribution Based on the Zero Truncated Poisson Distribution: Mathematical Properties and Applications to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 10-16, August.
    19. Bouvatier, Vincent & El Ouardi, Sofiane, 2023. "Credit gaps as banking crisis predictors: A different tune for middle- and low-income countries," Emerging Markets Review, Elsevier, vol. 54(C).
    20. Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09544-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.