IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v31y2025i1d10.1007_s10732-024-09544-z.html
   My bibliography  Save this article

Evolutionary optimization of the area under precision-recall curve for classifying imbalanced multi-class data

Author

Listed:
  • Marwa Chabbouh

    (University of Tunis)

  • Slim Bechikh

    (University of Tunis)

  • Efrén Mezura-Montes

    (University of Veracruz)

  • Lamjed Ben Said

    (University of Tunis)

Abstract

Classification of imbalanced multi-class data is still so far one of the most challenging issues in machine learning and data mining. This task becomes more serious when classes containing fewer instances are located in overlapping regions. Several approaches have been proposed through the literature to deal with these two issues such as the use of decomposition, the design of ensembles, the employment of misclassification costs, and the development of ad-hoc strategies. Despite these efforts, the number of existing works dealing with the imbalance in multi-class data is much reduced compared to the case of binary classification. Moreover, existing approaches still suffer from many limits. These limitations include difficulties in handling imbalances across multiple classes, challenges in adapting sampling techniques, limitations of certain classifiers, the need for specialized evaluation metrics, the complexity of data representation, and increased computational costs. Motivated by these observations, we propose a multi-objective evolutionary induction approach that evolves a population of NLM-DTs (Non-Linear Multivariate Decision Trees) using the $$\theta $$ θ -NSGA-III ( $$\theta $$ θ -Non-dominated Sorting Genetic Algorithm-III) as a search engine. The resulting algorithm is termed EMO-NLM-DT (Evolutionary Multi-objective Optimization of NLM-DTs) and is designed to optimize the construction of NLM-DTs for imbalanced multi-class data classification by simultaneously maximizing both the Macro-Average-Precision and the Macro-Average-Recall as two possibly conflicting objectives. The choice of these two measures as objective functions is motivated by a recent study on the appropriateness of performance metrics for imbalanced data classification, which suggests that the mAURPC (mean Area Under Recall Precision Curve) satisfies all necessary conditions for imbalanced multi-class classification. Moreover, the NLM-DT adoption as a baseline classifier to be optimized allows the generation non-linear hyperplanes that are well-adapted to the classes ‘boundaries’ geometrical shapes. The statistical analysis of the comparative experimental results on more than twenty imbalanced multi-class data sets reveals the outperformance of EMO-NLM-DT in building NLM-DTs that are highly effective in classifying imbalanced multi-class data compared to seven relevant and recent state-of-the-art methods.

Suggested Citation

  • Marwa Chabbouh & Slim Bechikh & Efrén Mezura-Montes & Lamjed Ben Said, 2025. "Evolutionary optimization of the area under precision-recall curve for classifying imbalanced multi-class data," Journal of Heuristics, Springer, vol. 31(1), pages 1-66, March.
  • Handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09544-z
    DOI: 10.1007/s10732-024-09544-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-024-09544-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-024-09544-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    2. Gavoille, Nicolas & Zasova, Anna, 2023. "What we pay in the shadows: Labor tax evasion, minimum wage hike and employment," Journal of Public Economics, Elsevier, vol. 228(C).
    3. Amanda Fitzgerald & Naoise Mac Giollabhui & Louise Dolphin & Robert Whelan & Barbara Dooley, 2018. "Dissociable psychosocial profiles of adolescent substance users," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-16, August.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    6. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    7. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    8. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    9. Montorsi, Carlotta & Fusco, Alessio & Van Kerm, Philippe & Bordas, Stéphane P.A., 2024. "Predicting depression in old age: Combining life course data with machine learning," Economics & Human Biology, Elsevier, vol. 52(C).
    10. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
    12. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    13. Merlijn Breugel & Cancan Qi & Zhongli Xu & Casper-Emil T. Pedersen & Ilya Petoukhov & Judith M. Vonk & Ulrike Gehring & Marijn Berg & Marnix Bügel & Orestes A. Carpaij & Erick Forno & Andréanne Morin , 2022. "Nasal DNA methylation at three CpG sites predicts childhood allergic disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Seo‐Young Silvia Kim & Akhil Bandreddi & R. Michael Alvarez, 2024. "Partisanship is why people vote in person in a pandemic," Social Science Quarterly, Southwestern Social Science Association, vol. 105(4), pages 1042-1060, July.
    15. Chen, Jian & Katchova, Ani L. & Zhou, Chenxi, . "Agricultural loan delinquency prediction using machine learning methods," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5).
    16. Jeffrey F. Papa & Reagan B. Ricafort, 2025. "Analysis on Credit Risk Assessment for a Multi-Purpose Cooperative Using Neural Network Algorithm," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 12(7), pages 315-323, July.
    17. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    18. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    19. Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
    20. Lea Helmers & Franziska Horn & Franziska Biegler & Tim Oppermann & Klaus-Robert Müller, 2019. "Automating the search for a patent’s prior art with a full text similarity search," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09544-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.