IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Strong equilibrium in network congestion games: increasing versus decreasing costs

Listed author(s):
  • Ron Holzman


  • Dov Monderer


Registered author(s):

    A network congestion game is played on a directed, two-terminal network. Every player chooses a route from his origin to his destination. The cost of a route is the sum of the costs of the arcs on it. The arc cost is a function of the number of players who use it. Rosenthal proved that such a game always has a Nash equilibrium in pure strategies. Here we pursue a systematic study of the classes of networks for which a strong equilibrium is guaranteed to exist, under two opposite monotonicity assumptions on the arc cost functions. Our main results are: (a) If costs are increasing, strong equilibrium is guaranteed on extension-parallel networks, regardless of whether the players’ origins and destinations are the same or may differ. (b) If costs are decreasing, and the players have the same origin but possibly different destinations, strong equilibrium is guaranteed on series-parallel networks. (c) If costs are decreasing, and both origins and destinations may differ, strong equilibrium is guaranteed on multiextension-parallel networks. In each case, the network condition is not only sufficient but also necessary in order to guarantee strong equilibrium. These results extend and improve earlier ones by Holzman and Law-Yone in the increasing case, and by Epstein et al. in the decreasing case. Copyright Springer-Verlag Berlin Heidelberg 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & Game Theory Society in its journal International Journal of Game Theory.

    Volume (Year): 44 (2015)
    Issue (Month): 3 (August)
    Pages: 647-666

    in new window

    Handle: RePEc:spr:jogath:v:44:y:2015:i:3:p:647-666
    DOI: 10.1007/s00182-014-0448-4
    Contact details of provider: Web page:

    Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    2. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    3. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    4. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    5. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:44:y:2015:i:3:p:647-666. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.