IDEAS home Printed from
   My bibliography  Save this article

Strong equilibrium in network congestion games: increasing versus decreasing costs


  • Ron Holzman


  • Dov Monderer



A network congestion game is played on a directed, two-terminal network. Every player chooses a route from his origin to his destination. The cost of a route is the sum of the costs of the arcs on it. The arc cost is a function of the number of players who use it. Rosenthal proved that such a game always has a Nash equilibrium in pure strategies. Here we pursue a systematic study of the classes of networks for which a strong equilibrium is guaranteed to exist, under two opposite monotonicity assumptions on the arc cost functions. Our main results are: (a) If costs are increasing, strong equilibrium is guaranteed on extension-parallel networks, regardless of whether the players’ origins and destinations are the same or may differ. (b) If costs are decreasing, and the players have the same origin but possibly different destinations, strong equilibrium is guaranteed on series-parallel networks. (c) If costs are decreasing, and both origins and destinations may differ, strong equilibrium is guaranteed on multiextension-parallel networks. In each case, the network condition is not only sufficient but also necessary in order to guarantee strong equilibrium. These results extend and improve earlier ones by Holzman and Law-Yone in the increasing case, and by Epstein et al. in the decreasing case. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
  • Handle: RePEc:spr:jogath:v:44:y:2015:i:3:p:647-666
    DOI: 10.1007/s00182-014-0448-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    2. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    3. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    4. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    5. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.

    More about this item


    Network; Congestion game; Strong equilibrium; Cost monotonicity; Series-parallel; Directed graph; C72; R41;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:44:y:2015:i:3:p:647-666. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.