IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v24y1995i1p23-35.html
   My bibliography  Save this article

Representation of Finite Action Large Games

Author

Listed:
  • Rath, Kali P

Abstract

A large game can be formalized as a probability distribution on the set of players' characteristics or as a function from a measure space of players to the set of players' characteristics. Given a game as a probability distribution on the set of players' characteristics, a representation of that game is a function from a set of players to the set of players' characteristics which induces the same distribution. It is shown that if the playoffs are continuous and there are only finite number of actions, then the set of Nash equilibria of any representation of a game induces essentially all the Cournot-Nash equilibrium distributions of the given game.

Suggested Citation

  • Rath, Kali P, 1995. "Representation of Finite Action Large Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 23-35.
  • Handle: RePEc:spr:jogath:v:24:y:1995:i:1:p:23-35
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona, Guilherme, 2008. "Large games with countable characteristics," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 344-347, February.
    2. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.
    3. Roger Guesnerie & Pedro Jara-Moroni, 2011. "Expectational coordination in simple economic contexts," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 205-246, June.
    4. Rath, Kali P. & Yeneng Sun & Shinji Yamashige, 1995. "The nonexistence of symmetric equilibria in anonymous games with compact action spaces," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 331-346.
    5. repec:eee:ecolet:v:162:y:2018:i:c:p:153-156 is not listed on IDEAS
    6. Guilherme Carmona, 2009. "A remark on the measurability of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 491-494, June.
    7. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    8. Guilherme Carmona, 2009. "Intermediate Preferences and Behavioral Conformity in Large Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 11(1), pages 9-25, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:24:y:1995:i:1:p:23-35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.