IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i2d10.1007_s10898-022-01160-0.html
   My bibliography  Save this article

Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities

Author

Listed:
  • Zhongruo Wang

    (University of California)

  • Krishnakumar Balasubramanian

    (University of California)

  • Shiqian Ma

    (University of California)

  • Meisam Razaviyayn

    (University of Southern California)

Abstract

In this paper, we study zeroth-order algorithms for minimax optimization problems that are nonconvex in one variable and strongly-concave in the other variable. Such minimax optimization problems have attracted significant attention lately due to their applications in modern machine learning tasks. We first consider a deterministic version of the problem. We design and analyze the Zeroth-Order Gradient Descent Ascent (ZO-GDA) algorithm, and provide improved results compared to existing works, in terms of oracle complexity. We also propose the Zeroth-Order Gradient Descent Multi-Step Ascent (ZO-GDMSA) algorithm that significantly improves the oracle complexity of ZO-GDA. We then consider stochastic versions of ZO-GDA and ZO-GDMSA, to handle stochastic nonconvex minimax problems. For this case, we provide oracle complexity results under two assumptions on the stochastic gradient: (i) the uniformly bounded variance assumption, which is common in traditional stochastic optimization, and (ii) the Strong Growth Condition (SGC), which has been known to be satisfied by modern over-parameterized machine learning models. We establish that under the SGC assumption, the complexities of the stochastic algorithms match that of deterministic algorithms. Numerical experiments are presented to support our theoretical results.

Suggested Citation

  • Zhongruo Wang & Krishnakumar Balasubramanian & Shiqian Ma & Meisam Razaviyayn, 2023. "Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities," Journal of Global Optimization, Springer, vol. 87(2), pages 709-740, November.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01160-0
    DOI: 10.1007/s10898-022-01160-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01160-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01160-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    2. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    3. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dimitris Bertsimas & Omid Nohadani, 2010. "Robust optimization with simulated annealing," Journal of Global Optimization, Springer, vol. 48(2), pages 323-334, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Shen & Ziqi Wang & Zi Xu, 2023. "Zeroth-order single-loop algorithms for nonconvex-linear minimax problems," Journal of Global Optimization, Springer, vol. 87(2), pages 551-580, November.
    2. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    3. Hoang Tran & Qiang Du & Guannan Zhang, 2025. "Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing," Computational Optimization and Applications, Springer, vol. 90(2), pages 481-513, March.
    4. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    5. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    6. Breitmoser, Yves & Valasek, Justin, 2017. "A rationale for unanimity in committees," Discussion Papers, Research Unit: Economics of Change SP II 2017-308, WZB Berlin Social Science Center.
    7. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    8. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    9. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    10. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    11. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    12. Ahmed, Rasel & Mahadzir, Shuhaimi & Ferdush, Jannatul & Matovu, Fahad & Mota-Babiloni, Adrián & Hafyan, Rendra Hakim, 2024. "Surrogate-assisted constrained hybrid particle swarm optimization algorithm for propane pre-cooled mixed refrigerant LNG process optimization," Energy, Elsevier, vol. 305(C).
    13. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    15. Khalid Mohammed Saffer Alzaidi & Oguz Bayat & Osman N. Uçan, 2018. "A Heuristic Approach for Optimal Planning and Operation of Distribution Systems," Journal of Optimization, Hindawi, vol. 2018, pages 1-19, June.
    16. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    17. Dimitris Bertsimas & Omid Nohadani, 2019. "Robust Maximum Likelihood Estimation," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 445-458, July.
    18. Cliff C Kerr & Salvador Dura-Bernal & Tomasz G Smolinski & George L Chadderdon & David P Wilson, 2018. "Optimization by Adaptive Stochastic Descent," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    19. Vikse, Matias & Watson, Harry A.J. & Kim, Donghoi & Barton, Paul I. & Gundersen, Truls, 2020. "Optimization of a dual mixed refrigerant process using a nonsmooth approach," Energy, Elsevier, vol. 196(C).
    20. Aleksandr Lobanov & Andrew Veprikov & Georgiy Konin & Aleksandr Beznosikov & Alexander Gasnikov & Dmitry Kovalev, 2023. "Non-smooth setting of stochastic decentralized convex optimization problem over time-varying Graphs," Computational Management Science, Springer, vol. 20(1), pages 1-55, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01160-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.