IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i4d10.1007_s10898-018-0724-0.html
   My bibliography  Save this article

Packing circles into perimeter-minimizing convex hulls

Author

Listed:
  • Josef Kallrath

    (BASF SE, Advanced Business Analytics, G-FSS/OAO-B009
    University of Florida)

  • Markus M. Frey

    (BASF SE, Advanced Business Analytics, G-FSS/OAO-B009
    Technische Universität München, TUM-School of Management)

Abstract

We present and solve a new computational geometry optimization problem in which a set of circles with given radii is to be arranged in unspecified area such that the length of the boundary, i.e., the perimeter, of the convex hull enclosing the non-overlapping circles is minimized. The convex hull boundary is established by line segments and circular arcs. To tackle the problem, we derive a non-convex mixed-integer non-linear programming formulation for this circle arrangement or packing problem. Moreover, we present some theoretical insights presenting a relaxed objective function for circles with equal radius leading to the same circle arrangement as for the original objective function. If we minimize only the sum of lengths of the line segments, for selected cases of up to 10 circles we obtain gaps smaller than $$10^{-4}$$ 10 - 4 using BARON or LINDO embedded in GAMS, while for up to 75 circles we are able to approximate the optimal solution with a gap of at most $$14\%$$ 14 % .

Suggested Citation

  • Josef Kallrath & Markus M. Frey, 2019. "Packing circles into perimeter-minimizing convex hulls," Journal of Global Optimization, Springer, vol. 73(4), pages 723-759, April.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-018-0724-0
    DOI: 10.1007/s10898-018-0724-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0724-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0724-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hifi, Mhand & Paschos, Vangelis Th. & Zissimopoulos, Vassilis, 2004. "A simulated annealing approach for the circular cutting problem," European Journal of Operational Research, Elsevier, vol. 159(2), pages 430-448, December.
    2. Yuriy Stoyan & Georgiy Yaskov, 2012. "Packing congruent hyperspheres into a hypersphere," Journal of Global Optimization, Springer, vol. 52(4), pages 855-868, April.
    3. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    4. Josef Kallrath, 2017. "Packing ellipsoids into volume-minimizing rectangular boxes," Journal of Global Optimization, Springer, vol. 67(1), pages 151-185, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josef Kallrath & Tatiana Romanova & Alexander Pankratov & Igor Litvinchev & Luis Infante, 2023. "Packing convex polygons in minimum-perimeter convex hulls," Journal of Global Optimization, Springer, vol. 85(1), pages 39-59, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    2. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    3. W Q Huang & Y Li & H Akeb & C M Li, 2005. "Greedy algorithms for packing unequal circles into a rectangular container," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 539-548, May.
    4. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    5. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    6. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    7. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    8. Riehme, Jan & Scheithauer, Guntram & Terno, Johannes, 1996. "The solution of two-stage guillotine cutting stock problems having extremely varying order demands," European Journal of Operational Research, Elsevier, vol. 91(3), pages 543-552, June.
    9. T. Kubach & A. Bortfeldt & H. Gehring, 2009. "Parallel greedy algorithms for packing unequal circles into a strip or a rectangle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 461-477, December.
    10. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    11. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    12. Anselmo Ramalho Pitombeira-Neto & Bruno de Athayde Prata, 2020. "A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 178-192, April.
    13. Faina, Loris, 1999. "An application of simulated annealing to the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 542-556, May.
    14. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    15. Birgin, E.G. & Lobato, R.D., 2019. "A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids," European Journal of Operational Research, Elsevier, vol. 272(2), pages 447-464.
    16. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    17. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    18. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    19. Hu, Qian & Wei, Lijun & Lim, Andrew, 2018. "The two-dimensional vector packing problem with general costs," Omega, Elsevier, vol. 74(C), pages 59-69.
    20. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:4:d:10.1007_s10898-018-0724-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.