IDEAS home Printed from https://ideas.repec.org/a/spr/jenvss/v14y2024i1d10.1007_s13412-023-00872-3.html
   My bibliography  Save this article

Can regional integration promote industrial green transformation? Empirical evidence from Yangtze River Delta Urban Agglomeration

Author

Listed:
  • Sijia Li

    (Institute of Economics)

  • Lihua Wu

    (Southeast University)

Abstract

This paper analyzes the spatial–temporal evolution of regional integration and industrial green transformation and empirically investigates the impact of regional integration on industrial green transformation using prefecture-level panel data of cities in the Yangtze River Delta Urban Agglomeration (YRDUA) from 2006 to 2018. The major findings are as follows: (1) during the observation period, the level of regional integration rose in general, with regions with a high integrated level expanding northward, southward, and westward in the YRDUA. Industrial green transformation has the property of path-dependent and a spatial lock-in pattern of “high in the east, low in the west.” (2) There exists a considerable U-shaped relationship between regional integration and industrial green transformation; most cities in the YRDUA have crossed the inflection point in terms of integrated development. Regional integration has a positive spillover effect on the industrial green transformation of the surrounding areas, which diminishes as geographic distance increases. When the level of regional integration becomes excessive, it also impedes surrounding areas’ industrial green transformation. (3) Regional integration can affect industrial green transformation by promoting economic scale expansion, industrial structure upgrading, and technological progress. At this moment, the economic scale is the most significant mediating factor. With the advancement of regional integration, technological progress will become critical. This paper provides a rationale for understanding industrial green transformation from the perspective of regional integration and enriches theoretical and empirical studies on ecological civilization construction and green development in urban agglomerations.

Suggested Citation

  • Sijia Li & Lihua Wu, 2024. "Can regional integration promote industrial green transformation? Empirical evidence from Yangtze River Delta Urban Agglomeration," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(1), pages 117-134, March.
  • Handle: RePEc:spr:jenvss:v:14:y:2024:i:1:d:10.1007_s13412-023-00872-3
    DOI: 10.1007/s13412-023-00872-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13412-023-00872-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13412-023-00872-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. Wei, Shang-Jin & Parsley, David, 2001. "Limiting Currency Volatility to Stimulate Goods Market Integration: a Price-Based Approach," CEPR Discussion Papers 2958, C.E.P.R. Discussion Papers.
    3. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    4. Yang, Mian & Yang, Fuxia & Sun, Chuanwang, 2018. "Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China's heavy industry sector," Energy Economics, Elsevier, vol. 69(C), pages 270-279.
    5. René Kemp & Babette Never, 2017. "Green transition, industrial policy, and economic development," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(1), pages 66-84.
    6. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    7. Xu, Hengzhou & Jiao, Man, 2021. "City size, industrial structure and urbanization quality—A case study of the Yangtze River Delta urban agglomeration in China," Land Use Policy, Elsevier, vol. 111(C).
    8. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    9. Yong ZHAO & Ouge QI, 2017. "Would Functional Specialization of Space Narrow Down Regional Disparities? — An Empirical Analysis Based on Panel Data of Chinese Urban Agglomerations 2003–2011," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    10. Richard G. Anderson & Marcelle Chauvet & Barry Jones, 2015. "Nonlinear Relationship Between Permanent and Transitory Components of Monetary Aggregates and the Economy," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 228-254, February.
    11. Junhong Bai & Jiayu Lu & Sijia Li, 2019. "Fiscal Pressure, Tax Competition and Environmental Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 431-447, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    2. Yanjun Yang & Rui Xue & Dong Yang, 2020. "Does market segmentation necessarily discourage energy efficiency?," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-19, May.
    3. Xiaohong Liu & Meiwen Zhang, 2022. "The Impact of Market Integration on Renewable Energy Technology Innovation: Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    4. Chen, Danling & Hu, Wenbo & Li, Yuying & Zhang, Chaozheng & Lu, Xinhai & Cheng, Hui, 2023. "Exploring the temporal and spatial effects of city size on regional economic integration: Evidence from the Yangtze River Economic Belt in China," Land Use Policy, Elsevier, vol. 132(C).
    5. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    6. Kerstin Enflo & Per Hjertstrand, 2009. "Relative Sources of European Regional Productivity Convergence: A Bootstrap Frontier Approach," Regional Studies, Taylor & Francis Journals, vol. 43(5), pages 643-659.
    7. Tiantian Gu & Shuyu Liu & Xuefan Liu & Yujia Shan & Enyang Hao & Miaomiao Niu, 2023. "Evaluation of the Smart City and Analysis of Its Spatial–Temporal Characteristics in China: A Case Study of 26 Cities in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 12(10), pages 1-23, September.
    8. Kui Ying & Lin Ha & Yaohua Kuang & Jinhong Ding, 2024. "Population Distribution in Guizhou’s Mountainous Cities: Evolution of Spatial Pattern and Driving Factors," Land, MDPI, vol. 13(9), pages 1-18, September.
    9. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    10. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    11. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    12. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    13. Robert, Anderton & Baldwin, Richard & Taglioni, Daria, 2007. "The impact of monetary union on trade prices," Journal of Financial Transformation, Capco Institute, vol. 19, pages 35-48.
    14. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    15. Jens J. Krüger, 2020. "Long‐run productivity trends: A global update with a global index," Review of Development Economics, Wiley Blackwell, vol. 24(4), pages 1393-1412, November.
    16. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    17. Tai-Hsin Huang & Yi-Huang Chiu & Chih-Ying Mao, 2021. "Imposing Regularity Conditions to Measure Banks’ Productivity Changes in Taiwan Using a Stochastic Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(2), pages 273-303, June.
    18. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    19. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    20. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:14:y:2024:i:1:d:10.1007_s13412-023-00872-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.