IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v48y2024i3d10.1007_s10878-024-01213-y.html
   My bibliography  Save this article

Faster algorithms for evacuation problems in networks with a single sink of small degree and bounded capacitated edges

Author

Listed:
  • Yuya Higashikawa

    (University of Hyogo)

  • Naoki Katoh

    (University of Hyogo)

  • Junichi Teruyama

    (University of Hyogo)

  • Yuki Tokuni

    (University of Hyogo)

Abstract

In this paper, we propose new algorithms for evacuation problems defined on dynamic flow networks. A dynamic flow network is a directed graph in which source nodes are given supplies and a single sink node is given a demand. The evacuation problem seeks a dynamic flow that sends all supplies from sources to the sink such that its demand is satisfied in the minimum feasible time horizon. For this problem, the current best algorithms are developed by Schlöter (2018) and Kamiyama (2019), which run in strongly polynomial time but with high-order polynomial time complexity because they use submodular function minimization as a subroutine. In this paper, we propose new algorithms that do not explicitly execute submodular function minimization, and we prove that they are faster than the current best algorithms when an input network is restricted such that the sink has a small in-degree and every edge has the same capacity.

Suggested Citation

  • Yuya Higashikawa & Naoki Katoh & Junichi Teruyama & Yuki Tokuni, 2024. "Faster algorithms for evacuation problems in networks with a single sink of small degree and bounded capacitated edges," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-22, October.
  • Handle: RePEc:spr:jcomop:v:48:y:2024:i:3:d:10.1007_s10878-024-01213-y
    DOI: 10.1007/s10878-024-01213-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01213-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01213-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Hoppe & Éva Tardos, 2000. "The Quickest Transshipment Problem," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 36-62, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    2. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Capacity Sharing in Networks," Papers 2307.03994, arXiv.org, revised Nov 2024.
    3. Miao, Zhaowei & Lim, Andrew & Ma, Hong, 2009. "Truck dock assignment problem with operational time constraint within crossdocks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 105-115, January.
    4. Ismaila Abderhamane Ndiaye & Emmanuel Neron & Antoine Jouglet, 2017. "Macroscopic evacuation plans for natural disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 231-272, January.
    5. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    6. Mukesh Rungta & Gino Lim & MohammadReza Baharnemati, 2012. "Optimal egress time calculation and path generation for large evacuation networks," Annals of Operations Research, Springer, vol. 201(1), pages 403-421, December.
    7. Tanka Nath Dhamala & Durga Prasad Khanal & Stephan Dempe, 2025. "Network restructuring for dynamic flow improvement," Annals of Operations Research, Springer, vol. 347(3), pages 1213-1247, April.
    8. Gopinath Mishra & Subhra Mazumdar & Arindam Pal, 2018. "Improved algorithms for the evacuation route planning problem," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 280-306, July.
    9. Urmila Pyakurel & Hari Nandan Nath & Stephan Dempe & Tanka Nath Dhamala, 2019. "Efficient Dynamic Flow Algorithms for Evacuation Planning Problems with Partial Lane Reversal," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    10. Bhaskar, Umang & Fleischer, Lisa & Anshelevich, Elliot, 2015. "A Stackelberg strategy for routing flow over time," Games and Economic Behavior, Elsevier, vol. 92(C), pages 232-247.
    11. Tetsuya Fujie & Yuya Higashikawa & Naoki Katoh & Junichi Teruyama & Yuki Tokuni, 2024. "Minmax regret 1-sink location problems on dynamic flow path networks with parametric weights," Journal of Combinatorial Optimization, Springer, vol. 48(2), pages 1-20, September.
    12. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    13. S Opasanon & E Miller-Hooks, 2009. "The Safest Escape problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1749-1758, December.
    14. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    15. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    16. Li Liu & Huan Jin & Yangguang Liu & Xiaomin Zhang, 2022. "Intelligent Evacuation Route Planning Algorithm Based on Maximum Flow," IJERPH, MDPI, vol. 19(13), pages 1-14, June.
    17. Jorge A. Huertas & Daniel Duque & Ethel Segura-Durán & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2020. "Evacuation dynamics: a modeling and visualization framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 661-691, September.
    18. Velez, Andres, 2025. "Addressing Congestion in Time-Expanded Networks: A Lifeboat Allocation Model for Maritime Evacuations," Discussion Papers 2025/2, Norwegian School of Economics, Department of Business and Management Science.
    19. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    20. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:48:y:2024:i:3:d:10.1007_s10878-024-01213-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.