IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i12d10.1057_jors.2008.122.html
   My bibliography  Save this article

The Safest Escape problem

Author

Listed:
  • S Opasanon

    (Faculty of Commerce and Accountancy, Thammasat University)

  • E Miller-Hooks

    (University of Maryland)

Abstract

In this paper, the Safest Escape (SEscape) problem is defined for providing evacuation plans for emergency egress from large buildings or a geographical region. The objective of the SEscape problem is to determine the set of paths and number of evacuees to send along each path such that the minimum probability of arrival at an exit for any evacuee is maximized. Such paths minimize the risk incurred by the evacuees who are forced to take the greatest risk. The problem is considered in a dynamic and time-varying network, where arc capacities are recaptured over time, arc traversal times are time-varying and arc capacities are random variables with probability distribution functions that vary with time. An exact algorithm, the SEscape algorithm, is proposed to address this problem.

Suggested Citation

  • S Opasanon & E Miller-Hooks, 2009. "The Safest Escape problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1749-1758, December.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:12:d:10.1057_jors.2008.122
    DOI: 10.1057/jors.2008.122
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.122
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. J. Anderson & P. Nash & A. B. Philpott, 1982. "A Class of Continuous Network Flow Problems," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 501-514, November.
    2. L. G. Chalmet & R. L. Francis & P. B. Saunders, 1982. "Network Models for Building Evacuation," Management Science, INFORMS, vol. 28(1), pages 86-105, January.
    3. H. W. Hamacher & S. Tufekci, 1987. "On the use of lexicographic min cost flows in evacuation modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 487-503, August.
    4. Bruce Hoppe & Éva Tardos, 2000. "The Quickest Transshipment Problem," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 36-62, February.
    5. A. B. Philpott, 1990. "Continuous-Time Flows in Networks," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 640-661, November.
    6. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismaila Abderhamane Ndiaye & Emmanuel Neron & Antoine Jouglet, 2017. "Macroscopic evacuation plans for natural disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 231-272, January.
    2. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    3. Marc Goerigk & Ismaila Abderhamane Ndiaye, 2016. "Robust flows with losses and improvability in evacuation planning," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 241-270, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    2. Nadine Baumann & Martin Skutella, 2009. "Earliest Arrival Flows with Multiple Sources," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 499-512, May.
    3. S. Hashemi & Ebrahim Nasrabadi, 2012. "On solving continuous-time dynamic network flows," Journal of Global Optimization, Springer, vol. 53(3), pages 497-524, July.
    4. Ismaila Abderhamane Ndiaye & Emmanuel Neron & Antoine Jouglet, 2017. "Macroscopic evacuation plans for natural disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 231-272, January.
    5. Douglas Bish & Esra Agca & Roger Glick, 2014. "Decision support for hospital evacuation and emergency response," Annals of Operations Research, Springer, vol. 221(1), pages 89-106, October.
    6. Koch, Ronald & Nasrabadi, Ebrahim, 2014. "Flows over time in time-varying networks: Optimality conditions and strong duality," European Journal of Operational Research, Elsevier, vol. 237(2), pages 580-589.
    7. Lovas, Gunnar G., 1995. "On performance measures for evacuation systems," European Journal of Operational Research, Elsevier, vol. 85(2), pages 352-367, September.
    8. Ronald Koch & Ebrahim Nasrabadi & Martin Skutella, 2011. "Continuous and discrete flows over time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 301-337, June.
    9. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    10. Jorge A. Huertas & Daniel Duque & Ethel Segura-Durán & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2020. "Evacuation dynamics: a modeling and visualization framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 661-691, September.
    11. Bish, Douglas R. & Sherali, Hanif D., 2013. "Aggregate-level demand management in evacuation planning," European Journal of Operational Research, Elsevier, vol. 224(1), pages 79-92.
    12. Jianghua Zhang & Yang Liu & Yingxue Zhao & Tianhu Deng, 2020. "Emergency evacuation problem for a multi-source and multi-destination transportation network: mathematical model and case study," Annals of Operations Research, Springer, vol. 291(1), pages 1153-1181, August.
    13. K L Poh & K W Choo & C G Wong, 2005. "A heuristic approach to the multi-period multi-commodity transportation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 708-718, June.
    14. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    15. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    16. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Dynamic Pricing and Pooling in Capacitated Networks," Papers 2307.03994, arXiv.org, revised Nov 2023.
    17. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    18. H. W. Hamacher & S. Tufekci, 1987. "On the use of lexicographic min cost flows in evacuation modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(4), pages 487-503, August.
    19. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    20. Alf Kimms & Marc Maiwald, 2017. "An exact network flow formulation for cell‐based evacuation in urban areas," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(7), pages 547-555, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:12:d:10.1057_jors.2008.122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.