IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i1d10.1007_s10878-017-0208-z.html
   My bibliography  Save this article

Study on specialist outpatient matching appointment and the balance matching model

Author

Listed:
  • Ying Yang

    (Shanghai Polytechnic University)

  • Shoucheng Luo

    (Shanghai Polytechnic University)

  • Jing Fan

    (Shanghai Polytechnic University)

  • Xinye Zhou

    (Shanghai Polytechnic University)

  • Chunyu Fu

    (Shanghai Jiaotong University)

  • Guochun Tang

    (Shanghai Polytechnic University)

Abstract

Currently specialists’ outpatient appointments in large hospitals in China are made by patients’ one-side choice of specialists, and most are “first select first served”. A specialist cannot choose a patient according to his specialty. Because of the “worship of famous doctors” and asymmetric information between specialists and patients, the appointments are often made with certain blindness, thus it is difficult for patients to get the best diagnosis and treatment from specialists. In this paper, we apply the two-sided matching theory, from the both views of patients and specialists, we design specialists-outpatients matching appointment system, in the system, we propose the process of the appointment and the one-to-many appointment matching algorithm. In order to provide fairness to both sides, we apply the theory of balance-matching, construct the algorithm of one-to-one and one-to-many two-sided balance matching. At last, through the computational examples we prove the model is effective in hospital specialists outpatient appointment.

Suggested Citation

  • Ying Yang & Shoucheng Luo & Jing Fan & Xinye Zhou & Chunyu Fu & Guochun Tang, 2019. "Study on specialist outpatient matching appointment and the balance matching model," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 20-39, January.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0208-z
    DOI: 10.1007/s10878-017-0208-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0208-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0208-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roth, Alvin E, 1986. "On the Allocation of Residents to Rural Hospitals: A General Property of Two-Sided Matching Markets," Econometrica, Econometric Society, vol. 54(2), pages 425-427, March.
    2. Edward J. Rising & Robert Baron & Barry Averill, 1973. "A Systems Analysis of a University-Health-Service Outpatient Clinic," Operations Research, INFORMS, vol. 21(5), pages 1030-1047, October.
    3. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    4. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    5. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Meng & Wang, Yajun & Zhang, Xueyi & Xu, Chang, 2023. "Online doctor-patient dynamic stable matching model based on regret theory under incomplete information," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    2. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    3. Ying Yang & Huijing Wu & Caixia Yan, 2021. "Medical consumable usage control based on Canopy_K-means clustering and WARM," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 722-739, November.
    4. Jing Fan & Hui Shi, 0. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-13.
    5. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 2021. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 966-987, November.
    6. Jing Fan & Hui Shi, 2021. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 896-908, November.
    7. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 2021. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 677-699, November.
    8. Ying Yang & Huijing Wu & Caixia Yan, 0. "Medical consumable usage control based on Canopy_K-means clustering and WARM," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-18.
    9. Jing Yu & Lining Xing & Xu Tan, 0. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    10. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 0. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    11. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 0. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    12. Jing Yu & Lining Xing & Xu Tan, 2021. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 740-759, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    2. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    3. Yu Zhang & Vidyadhar G. Kulkarni, 2017. "Two-day appointment scheduling with patient preferences and geometric arrivals," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 173-209, February.
    4. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    5. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    6. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    7. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    8. Thu Nguyen & Appa Sivakumar & Stephen Graves, 2015. "A network flow approach for tactical resource planning in outpatient clinics," Health Care Management Science, Springer, vol. 18(2), pages 124-136, June.
    9. Jianzhe Luo & Vidyadhar G. Kulkarni & Serhan Ziya, 2012. "Appointment Scheduling Under Patient No-Shows and Service Interruptions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 670-684, October.
    10. Yu Fu & Amarnath Banerjee, 2021. "A Stochastic Programming Model for Service Scheduling with Uncertain Demand: an Application in Open-Access Clinic Scheduling," SN Operations Research Forum, Springer, vol. 2(3), pages 1-32, September.
    11. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    12. Mehmet A. Begen & Maurice Queyranne, 2011. "Appointment Scheduling with Discrete Random Durations," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 240-257, May.
    13. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    14. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    15. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    16. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    17. Kuiper, Alex & Mandjes, Michel, 2015. "Appointment scheduling in tandem-type service systems," Omega, Elsevier, vol. 57(PB), pages 145-156.
    18. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    19. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    20. Yun Zhou & Mahmut Parlar & Vedat Verter & Shannon Fraser, 2021. "Surgical Scheduling with Constrained Patient Waiting Times," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3253-3271, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0208-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.