IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v12y2006i3d10.1007_s10878-006-9633-0.html
   My bibliography  Save this article

Optimal testing and repairing a failed series system

Author

Listed:
  • Mikhail Y. Kovalyov

    (Belarusian State University
    National Academy of Sciences of Belarus)

  • Marie-Claude Portmann

    (Ecole des Mines de Nancy, Parc de Saurupt)

  • Ammar Oulamara

    (Ecole des Mines de Nancy, Parc de Saurupt)

Abstract

We consider a series repairable system that includes n components and assume that it has just failed because exactly one of its components has failed. The failed component is unknown. Probability of each component to be responsible for the failure is given. Each component can be tested and repaired at given costs. Both testing and repairing operations are assumed to be perfect, that is, the result of testing a component is a true information that this component is failed or active (not failed), and the result of repairing is that the component becomes active. The problem is to find a sequence of testing and repairing operations over the components such that the system is always repaired and the total expected cost of testing and repairing the components is minimized. We show that this problem is equivalent to minimizing a quadratic pseudo-boolean function. Polynomially solvable special cases of the latter problem are identified and a fully polynomial time approximation scheme (FPTAS) is derived for the general case. Computer experiments are provided to demonstrate high efficiency of the proposed FPTAS. In particular, it is able to find a solution with relative error ɛ = 0.1 for problems with more than 4000 components within 5 minutes on a standard PC with 1.2 Mhz processor.

Suggested Citation

  • Mikhail Y. Kovalyov & Marie-Claude Portmann & Ammar Oulamara, 2006. "Optimal testing and repairing a failed series system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 279-295, November.
  • Handle: RePEc:spr:jcomop:v:12:y:2006:i:3:d:10.1007_s10878-006-9633-0
    DOI: 10.1007/s10878-006-9633-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-9633-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-9633-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janiak, Adam & Kovalyov, Mikhail Y. & Kubiak, Wieslaw & Werner, Frank, 2005. "Positive half-products and scheduling with controllable processing times," European Journal of Operational Research, Elsevier, vol. 165(2), pages 416-422, September.
    2. T. Badics & E. Boros, 1998. "Minimization of Half-Products," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 649-660, August.
    3. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dolgui, Alexandre & Kovalev, Sergey & Pesch, Erwin, 2015. "Approximate solution of a profit maximization constrained virtual business planning problem," Omega, Elsevier, vol. 57(PB), pages 212-216.
    2. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    2. Halman, Nir & Kellerer, Hans & Strusevich, Vitaly A., 2018. "Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 435-447.
    3. Kellerer, Hans & Rustogi, Kabir & Strusevich, Vitaly A., 2020. "A fast FPTAS for single machine scheduling problem of minimizing total weighted earliness and tardiness about a large common due date," Omega, Elsevier, vol. 90(C).
    4. Sergey Kovalev, 2015. "Maximizing total tardiness on a single machine in $$O(n^2)$$ O ( n 2 ) time via a reduction to half-product minimization," Annals of Operations Research, Springer, vol. 235(1), pages 815-819, December.
    5. Kellerer, Hans & Strusevich, Vitaly, 2013. "Fast approximation schemes for Boolean programming and scheduling problems related to positive convex Half-Product," European Journal of Operational Research, Elsevier, vol. 228(1), pages 24-32.
    6. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    7. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    8. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    9. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    10. Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
    11. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    12. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    13. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    14. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "On the convexity of step out–step in sequencing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 68-109, April.
    15. Xu, Zhou, 2012. "A strongly polynomial FPTAS for the symmetric quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 377-381.
    16. Evgeny Gurevsky & Sergey Kovalev & Mikhail Y. Kovalyov, 2021. "Min-max controllable risk problems," 4OR, Springer, vol. 19(1), pages 93-101, March.
    17. Musegaas, M. & Borm, P.E.M. & Quant, M., 2015. "Step out–Step in sequencing games," European Journal of Operational Research, Elsevier, vol. 246(3), pages 894-906.
    18. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    19. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    20. Yang, Guangjing & Sun, Hao & Hou, Dongshuang & Xu, Genjiu, 2019. "Games in sequencing situations with externalities," European Journal of Operational Research, Elsevier, vol. 278(2), pages 699-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:12:y:2006:i:3:d:10.1007_s10878-006-9633-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.