IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v40y2023i2d10.1007_s00357-023-09437-z.html
   My bibliography  Save this article

Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform

Author

Listed:
  • Minji Kim

    (University of North Carolina at Chapel Hill)

  • Hee-Seok Oh

    (Seoul National University)

  • Yaeji Lim

    (Chung-Ang University)

Abstract

This study develops a new clustering method for high-dimensional zero-inflated time series data. The proposed method is based on thick-pen transform (TPT), in which the basic idea is to draw along the data with a pen of a given thickness. Since TPT is a multi-scale visualization technique, it provides some information on the temporal tendency of neighborhood values. We introduce a modified TPT, termed ‘ensemble TPT (e-TPT)’, to enhance the temporal resolution of zero-inflated time series data that is crucial for clustering them efficiently. Furthermore, this study defines a modified similarity measure for zero-inflated time series data considering e-TPT and proposes an efficient iterative clustering algorithm suitable for the proposed measure. Finally, the effectiveness of the proposed method is demonstrated by simulation experiments and two real datasets: step count data and newly confirmed COVID-19 case data.

Suggested Citation

  • Minji Kim & Hee-Seok Oh & Yaeji Lim, 2023. "Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 407-431, July.
  • Handle: RePEc:spr:jclass:v:40:y:2023:i:2:d:10.1007_s00357-023-09437-z
    DOI: 10.1007/s00357-023-09437-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-023-09437-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-023-09437-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Hwa Kyung & Li, Wai Keung & Yu, Philip L.H., 2014. "Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 151-158.
    2. Fryzlewicz, Piotr & Oh, H. S., 2011. "Thick pen transformation for time series," LSE Research Online Documents on Economics 37663, London School of Economics and Political Science, LSE Library.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    4. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 299-312.
    5. P. Fryzlewicz & H.‐S. Oh, 2011. "Thick pen transformation for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 499-529, September.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    7. Leisch, Friedrich, 2006. "A toolbox for K-centroids cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 526-544, November.
    8. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grn, Bettina & Leisch, Friedrich, 2009. "Dealing with label switching in mixture models under genuine multimodality," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 851-861, May.
    2. Rainer Dangl & Friedrich Leisch, 2020. "Effects of Resampling in Determining the Number of Clusters in a Data Set," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 558-583, October.
    3. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    6. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    7. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    8. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    9. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    10. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    11. Tommaso Proietti, 2023. "Peaks, gaps, and time‐reversibility of economic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 43-68, January.
    12. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    13. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    14. Nathalia Castellanos & Dhruv Desai & Sebastian Frank & Stefano Pasquali & Dhagash Mehta, 2024. "Can an unsupervised clustering algorithm reproduce a categorization system?," Papers 2408.10340, arXiv.org.
    15. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    16. Wadud, Sania & Gronwald, Marc & Durand, Robert B. & Lee, Seungho, 2023. "Co-movement between commodity and equity markets revisited—An application of the Thick Pen method," International Review of Financial Analysis, Elsevier, vol. 87(C).
    17. Nilsen Gro & Borgan Ørnulf & LiestØl Knut & Lingjærde Ole Christian, 2013. "Identifying clusters in genomics data by recursive partitioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 637-652, October.
    18. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    19. Seoung Bum Kim & Jung Woo Lee & Sin Young Kim & Deok Won Lee, 2013. "Dental Informatics to Characterize Patients with Dentofacial Deformities," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    20. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:40:y:2023:i:2:d:10.1007_s00357-023-09437-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.