IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v35y2018i1d10.1007_s00357-017-9227-9.html
   My bibliography  Save this article

Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation

Author

Listed:
  • Francesco Bartolucci

    (University of Perugia)

  • Giorgio E. Montanari

    (University of Perugia)

  • Silvia Pandolfi

    (University of Perugia
    University of Perugia)

Abstract

In the social, behavioral, and health sciences it is often of interest to identify latent or unobserved groups in the population with the group membership of the individuals depending on a set of observed variables. In particular, we focus on the field of nursing home assessment in which the response variables typically come from the administration of questionnaires made of categorical items. These types of data may suffer from missing values and the use of lengthy questionnaires may be problematic as a large number of items could have a negative impact on the responses. In such a context, we introduce an extended version of the Latent Class (LC) model aimed at dealing with missing values, by assuming a form of latent ignorability. Moreover, we propose an item selection algorithm, based on the LC model, for finding the smallest subset of items providing an amount of information close to that of the initial set. The proposed approach is illustrated through an application to a dataset collected within an Italian project on the quality-of-life of nursing home patients.

Suggested Citation

  • Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
  • Handle: RePEc:spr:jclass:v:35:y:2018:i:1:d:10.1007_s00357-017-9227-9
    DOI: 10.1007/s00357-017-9227-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-017-9227-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-017-9227-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.
    2. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    3. Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 11-35, February.
    4. Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
    5. Formann, Anton K., 2007. "Mixture analysis of multivariate categorical data with covariates and missing entries," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5236-5246, July.
    6. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    7. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    8. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Del Sarto & Michela Gnaldi, 2022. "Spare time use: profiles of Italian Millennials (beyond the media hype)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1403-1428, December.
    2. Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.
    2. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.
    3. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    4. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    5. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    6. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    7. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    8. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    9. repec:jss:jstsof:28:i04 is not listed on IDEAS
    10. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    11. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    12. Kerekes, Monika, 2012. "Growth miracles and failures in a Markov switching classification model of growth," Journal of Development Economics, Elsevier, vol. 98(2), pages 167-177.
    13. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    14. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    15. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    16. O’Hagan, Adrian & Murphy, Thomas Brendan & Gormley, Isobel Claire, 2012. "Computational aspects of fitting mixture models via the expectation–maximization algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3843-3864.
    17. Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
    18. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    19. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    20. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
    21. Blostein, Martin & Miljkovic, Tatjana, 2019. "On modeling left-truncated loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 35-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:35:y:2018:i:1:d:10.1007_s00357-017-9227-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.