IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i1d10.1007_s13253-023-00558-x.html
   My bibliography  Save this article

Presence-Only for Marked Point Process Under Preferential Sampling

Author

Listed:
  • Guido A. Moreira

    (Universidade do Minho)

  • Raquel Menezes

    (Universidade do Minho)

  • Laura Wise

    (Instituto Português do Mar e da Atmosfera (IPMA))

Abstract

Preferential sampling models have garnered significant attention in recent years. Although the original model was developed for geostatistics, it founds applications in other types of data, such as point processes in the form of presence-only data. While this has been recognized in the Statistics literature, there is value in incorporating ideas from both presence-only and preferential sampling literature. In this paper, we propose a novel model that extends existing ideas to handle a continuous variable collected through opportunistic sampling. To demonstrate the potential of our approach, we apply it to sardine biomass data collected during commercial fishing trips. While the data is intuitively understood, it poses challenges due to two types of preferential sampling: fishing events (presence data) are non-random samples of the region, and fishermen tend to set their nets in areas with a high quality and value of catch (i.e., bigger schools of the target species). We discuss theoretical and practical aspects of the problem, and propose a well-defined probabilistic approach. Our approach employs a data augmentation scheme that predicts the number of unobserved fishing locations and corresponding biomass (in kg). This allows for evaluation of the Poisson Process likelihood without the need for numerical approximations. The results of our case study may serve as an incentive to use data collected during commercial fishing trips for decision-making aimed at benefiting both ecological and economic aspects. The proposed methodology has potential applications in a variety of fields, including ecology and epidemiology, where marked point process model are commonly used.

Suggested Citation

  • Guido A. Moreira & Raquel Menezes & Laura Wise, 2024. "Presence-Only for Marked Point Process Under Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 92-109, March.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00558-x
    DOI: 10.1007/s13253-023-00558-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00558-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00558-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    2. Flávio B. Gonçalves & Dani Gamerman, 2018. "Exact Bayesian inference in spatiotemporal Cox processes driven by multivariate Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 157-175, January.
    3. Shinichiro Shirota & Sudipto Banerjee, 2019. "Scalable inference for space‐time Gaussian Cox processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(3), pages 269-287, May.
    4. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    2. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    3. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    4. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    5. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    6. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    7. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    8. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    9. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.
    10. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
    11. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    12. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    13. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    14. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    15. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    16. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    17. Jeffrey W. Doser & Andrew O. Finley & Sarah P. Saunders & Marc Kéry & Aaron S. Weed & Elise F. Zipkin, 2025. "Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 146-171, March.
    18. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    19. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.
    20. Alexander Malinowski & Martin Schlather & Zhengjun Zhang, 2016. "Intrinsically weighted means and non-ergodic marked point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00558-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.