IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i1d10.1007_s13253-023-00595-6.html
   My bibliography  Save this article

Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models

Author

Listed:
  • Jeffrey W. Doser

    (Michigan State University
    Michigan State University)

  • Andrew O. Finley

    (Michigan State University
    Michigan State University
    Michigan State University)

  • Sarah P. Saunders

    (National Audubon Society)

  • Marc Kéry

    (Swiss Ornithological Institute)

  • Aaron S. Weed

    (National Park Service)

  • Elise F. Zipkin

    (Michigan State University
    Michigan State University)

Abstract

Occupancy models are frequently used by ecologists to quantify spatial variation in species distributions while accounting for observational biases in the collection of detection-nondetection data. However, the common assumption that a single set of regression coefficients can adequately explain species-environment relationships is often unrealistic, especially across large spatial domains. Here we develop single-species (i.e., univariate) and multi-species (i.e., multivariate) spatially-varying coefficient (SVC) occupancy models to account for spatially-varying species-environment relationships. We employ Nearest Neighbor Gaussian Processes and Pólya-Gamma data augmentation in a hierarchical Bayesian framework to yield computationally-efficient Gibbs samplers, which we implement in the spOccupancy R package. For multi-species models, we use spatial factor dimension reduction to efficiently model datasets with large numbers of species (e.g., $$> 10$$ > 10 ). The hierarchical Bayesian framework readily enables generation of posterior predictive maps of the SVCs, with fully propagated uncertainty. We apply our SVC models to quantify spatial variability in the relationships between maximum breeding season temperature and occurrence probability of 21 grassland bird species across the USA. Jointly modeling species generally outperformed single-species models, which all revealed substantial spatial variability in species occurrence relationships with maximum temperatures. Our models are particularly relevant for quantifying species-environment relationships using detection-nondetection data from large-scale monitoring programs, which are becoming increasingly prevalent for answering macroscale ecological questions regarding wildlife responses to global change.Supplementary material to this paper is provided online.

Suggested Citation

  • Jeffrey W. Doser & Andrew O. Finley & Sarah P. Saunders & Marc Kéry & Aaron S. Weed & Elise F. Zipkin, 2025. "Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 146-171, March.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00595-6
    DOI: 10.1007/s13253-023-00595-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00595-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00595-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    2. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    3. Tom H. Oliver & Mike D. Morecroft, 2014. "Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(3), pages 317-335, May.
    4. Hogan J.W. & Tchernis R., 2004. "Bayesian Factor Analysis for Spatially Correlated Data, With Application to Summarizing Area-Level Material Deprivation From Census Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 314-324, January.
    5. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    6. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    7. Alan Gelfand & Alexandra Schmidt & Sudipto Banerjee & C. Sirmans, 2004. "Nonstationary multivariate process modeling through spatially varying coregionalization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 263-312, December.
    8. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    9. Dorazio, Robert M. & Royle, J. Andrew, 2005. "Estimating Size and Composition of Biological Communities by Modeling the Occurrence of Species," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 389-398, June.
    10. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    11. Alan E. Gelfand & Alexandra M. Schmidt & Shanshan Wu & John A. Silander & Andrew Latimer & Anthony G. Rebelo, 2005. "Modelling species diversity through species level hierarchical modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    2. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    3. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    4. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    5. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    6. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.
    7. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    8. Mauricio Campos & Bo Li & Guillaume Lafontaine & Joseph Napier & Feng Sheng Hu, 2024. "Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 576-600, September.
    9. Arnab Hazra & Pratik Nag & Rishikesh Yadav & Ying Sun, 2025. "Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 231-254, March.
    10. Lu Zhang & Sudipto Banerjee & Andrew O. Finley, 2021. "High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    11. Jakob A. Dambon & Stefan S. Fahrländer & Saira Karlen & Manuel Lehner & Jaron Schlesinger & Fabio Sigrist & Anna Zimmermann, 2022. "Examining the vintage effect in hedonic pricing using spatially varying coefficients models: a case study of single-family houses in the Canton of Zurich," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-14, December.
    12. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    13. Yiping Hong & Yan Song & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2023. "The Third Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 618-635, December.
    14. Lu Zhang & Sudipto Banerjee, 2022. "Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data," Biometrics, The International Biometric Society, vol. 78(2), pages 560-573, June.
    15. Christian Stratton & Kathryn M. Irvine & Katharine M. Banner & Emily S. Almberg & Dan Bachen & Kristina Smucker, 2025. "Joint Spatial Modeling Bridges the Gap Between Disparate Disease Surveillance and Population Monitoring Efforts Informing Conservation of At-risk Bat Species," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 120-145, March.
    16. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    17. John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    18. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    19. Zhou Lan & Brian J. Reich & Joseph Guinness & Dipankar Bandyopadhyay & Liangsuo Ma & F. Gerard Moeller, 2022. "Geostatistical modeling of positive‐definite matrices: An application to diffusion tensor imaging," Biometrics, The International Biometric Society, vol. 78(2), pages 548-559, June.
    20. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00595-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.