IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v22y2017i1d10.1007_s13253-016-0270-5.html
   My bibliography  Save this article

Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana

Author

Listed:
  • Y. Hagar

    (University of Colorado at Boulder)

  • M. Hayden

    (National Center of Atmospheric Research (NCAR))

  • C. Wiedinmyer

    (National Center of Atmospheric Research (NCAR))

  • V. Dukic

    (University of Colorado at Boulder)

Abstract

The “meningitis belt” is a region in sub-Saharan Africa where annual outbreaks of meningitis occur, with epidemics observed cyclically. While we know that meningitis is heavily dependent on seasonal trends, the exact pathways for contracting the disease are not fully understood and warrant further investigation. Most previous approaches have used large sample inference to assess impacts of weather on meningitis rates. However, in the case of rare events, the validity of such assumptions is uncertain. This work examines the meningitis trends in the context of rare events, with the specific objective of quantifying the underlying seasonal patterns in meningitis rates. We compare three main classes of models: the Poisson generalized linear model, the Poisson generalized additive model, and a Bayesian hazard model extended to accommodate count data and a changing at-risk population. We compare the accuracy and robustness of the models through the bias, RMSE, and standard deviation of the estimators, and also provide a detailed case study of meningitis patterns for data collected in Navrongo, Ghana. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Y. Hagar & M. Hayden & C. Wiedinmyer & V. Dukic, 2017. "Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 76-104, March.
  • Handle: RePEc:spr:jagbes:v:22:y:2017:i:1:d:10.1007_s13253-016-0270-5
    DOI: 10.1007/s13253-016-0270-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-016-0270-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-016-0270-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    2. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    3. Luping Zhao & Timothy E. Hanson & Bradley P. Carlin, 2009. "Mixtures of Polya trees for flexible spatial frailty survival modelling," Biometrika, Biometrika Trust, vol. 96(2), pages 263-276.
    4. Diggle, Peter J. & Guan, Yongtao & Hart, Anthony C. & Paize, Fauzia & Stanton, Michelle, 2010. "Estimating Individual-Level Risk in Spatial Epidemiology Using Spatially Aggregated Information on the Population at Risk," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1394-1402.
    5. Michelle C. Stanton & and Lydiane Agier & Benjamin M. Taylor & Peter J. Diggle, 2014. "Towards realtime spatiotemporal prediction of district level meningitis incidence in sub-Saharan Africa," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 661-678, June.
    6. Bouman, Peter & Meng, Xiao-Li & Dignam, James & Dukic, Vanja, 2007. "A Multiresolution Hazard Model for Multicenter Survival Studies: Application to Tamoxifen Treatment in Early Stage Breast Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1145-1157, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.
    2. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    3. Wolter, James Lewis, 2016. "Kernel estimation of hazard functions when observations have dependent and common covariates," Journal of Econometrics, Elsevier, vol. 193(1), pages 1-16.
    4. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    5. Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2023. "Polya tree Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    6. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    7. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    8. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    9. Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.
    10. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    11. Sugawara, Shinya, 2012. "A nonparametric Bayesian approach for counterfactual prediction with an application to the Japanese private nursing home market," MPRA Paper 42154, University Library of Munich, Germany.
    12. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    13. Timothy Hanson & Mingan Yang, 2007. "Bayesian Semiparametric Proportional Odds Models," Biometrics, The International Biometric Society, vol. 63(1), pages 88-95, March.
    14. Li, Li & Hanson, Timothy E., 2014. "A Bayesian semiparametric regression model for reliability data using effective age," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 177-188.
    15. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
    16. Jianchang Lin & Debajyoti Sinha & Stuart Lipsitz & Adriano Polpo, 2012. "Semiparametric Bayesian Survival Analysis using Models with Log-linear Median," Biometrics, The International Biometric Society, vol. 68(4), pages 1136-1145, December.
    17. Yongtao Guan, 2011. "Second-Order Analysis of Semiparametric Recurrent Event Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 730-739, September.
    18. Levine, Richard A. & Fan, Juanjuan & Strickland, Pamela Ohman & Demirel, Shaban, 2012. "Frailty modeling via the empirical Bayes–Hastings sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1303-1318.
    19. William Cipolli & Timothy Hanson, 2019. "Supervised learning via smoothed Polya trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 877-904, December.
    20. James Wolter, 2015. "Kernel Estimation Of Hazard Functions When Observations Have Dependent and Common Covariates," Economics Series Working Papers 761, University of Oxford, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:22:y:2017:i:1:d:10.1007_s13253-016-0270-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.