IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/vyid10.1007_s10796-020-10037-0.html
   My bibliography  Save this article

A Hybrid Bi-level Metaheuristic for Credit Scoring

Author

Listed:
  • Doruk Şen

    (Marmara University
    Istanbul Bilgi University)

  • Cem Çağrı Dönmez

    (Marmara University)

  • Umman Mahir Yıldırım

    (Istanbul Bilgi University)

Abstract

This research aims to propose a framework for evaluating credit applications by assigning a binary score to the applicant. The score is targeted to determine whether the credit application is ‘good’ or ‘bad’ in small business purpose loans. Even tiny performance improvements in small businesses may yield a positive impact on the economy as they generate more than 60% of the value. The method presented in this paper hybridizes the Genetic Algorithm (GA) and the Support Vector Machine (SVM) in a bi-level feeding mechanism for increased prediction accuracy. The first level is to determine the parameters of SVM and the second is to find a feature set that increases classification accuracy. To test the proposed approach, we have investigated three different data sets; UCI Australian data set for preliminary works, Lending Club data set for large training and testing, and UCI German and Australian datasets for benchmarking against some other notable methods that use GA. Our computational results show that our proposed method using a feedback mechanism under the hybrid bi-level GA-SVM structure outperforms other classification algorithms in the literature, namely Decision Tree, Random Forests, Logistic Regression, SVM and Artificial Neural Networks, effectively improves the classification accuracy.

Suggested Citation

  • Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 0. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 0, pages 1-11.
  • Handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-020-10037-0
    DOI: 10.1007/s10796-020-10037-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-020-10037-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-020-10037-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilbur C. Plummer & Ralph A. Young, 1940. "Preface and table of contents to "Sales Finance Companies and Their Credit Practices"," NBER Chapters, in: Sales Finance Companies and Their Credit Practices, pages -17--8, National Bureau of Economic Research, Inc.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    3. Ligang Zhou & Kin Keung Lai & Jerome Yen, 2009. "Credit Scoring Models With Auc Maximization Based On Weighted Svm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 677-696.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    5. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1, January.
    6. Ruixi Yuan & Zhu Li & Xiaohong Guan & Li Xu, 2010. "An SVM-based machine learning method for accurate internet traffic classification," Information Systems Frontiers, Springer, vol. 12(2), pages 149-156, April.
    7. Wilbur C. Plummer & Ralph A. Young, 1940. "Index to "Sales Finance Companies and Their Credit Practices"," NBER Chapters, in: Sales Finance Companies and Their Credit Practices, pages 289-298, National Bureau of Economic Research, Inc.
    8. Lifeng Mu & Vijayan Sugumaran & Fangyuan Wang, 0. "A Hybrid Genetic Algorithm for Software Architecture Re-Modularization," Information Systems Frontiers, Springer, vol. 0, pages 1-29.
    9. Wilbur C. Plummer, 1940. "Sales Finance Companies and Their Credit Practices," NBER Books, National Bureau of Economic Research, Inc, number plum40-1, January.
    10. John M. Chapman, 1940. "Commercial Banks and Consumer Instalment Credit," NBER Books, National Bureau of Economic Research, Inc, number chap40-1, January.
    11. Gaganmeet Kaur Awal & K. K. Bharadwaj, 2019. "Leveraging collective intelligence for behavioral prediction in signed social networks through evolutionary approach," Information Systems Frontiers, Springer, vol. 21(2), pages 417-439, April.
    12. Amir Hassan Zadeh & Hamed M. Zolbanin & Ramesh Sharda & Dursun Delen, 2019. "Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis," Information Systems Frontiers, Springer, vol. 21(4), pages 743-760, August.
    13. Wilbur C. Plummer & Ralph A. Young, 1940. "Summary Survey to "Sales Finance Companies and Their Credit Practices"," NBER Chapters, in: Sales Finance Companies and Their Credit Practices, pages 1-32, National Bureau of Economic Research, Inc.
    14. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    16. Wilbur C. Plummer & Ralph A. Young, 1940. "List Of Tables to "Sales Finance Companies and Their Credit Practices"," NBER Chapters, in: Sales Finance Companies and Their Credit Practices, pages -7, National Bureau of Economic Research, Inc.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    19. David Durand, 1941. "Risk Elements in Consumer Instalment Financing, Technical Edition," NBER Books, National Bureau of Economic Research, Inc, number dura41-2, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 2020. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 22(5), pages 1009-1019, October.
    2. Edgar R. Fiedler, 1971. "Section F: Bibliography," NBER Chapters, in: Measures of Credit Risk and Experience, pages 348-352, National Bureau of Economic Research, Inc.
    3. Neuberg Richard & Hannah Lauren, 2017. "Loan pricing under estimation risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 69-87, June.
    4. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
    5. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    6. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    8. Maria Rocha Sousa & João Gama & Elísio Brandão, 2013. "Introducing time-changing economics into credit scoring," FEP Working Papers 513, Universidade do Porto, Faculdade de Economia do Porto.
    9. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    10. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    11. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    12. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    13. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
    14. Andrea Bedin & Monica Billio & Michele Costola & Loriana Pelizzon, 2019. "Credit Scoring in SME Asset-Backed Securities: An Italian Case Study," JRFM, MDPI, vol. 12(2), pages 1-28, May.
    15. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    16. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    17. Hansen, Mary Eschelbach & Hansen, Bradley A., 2012. "Crisis and Bankruptcy: The Mediating Role of State Law, 1920–1932," The Journal of Economic History, Cambridge University Press, vol. 72(2), pages 448-468, May.
    18. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    19. Fabián Enrique Salazar Villano, 2013. "Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia," Estudios Gerenciales, Universidad Icesi, December.
    20. Olga V. Borisova & Olga A. Kalugina & Nikolay N. Kosarenko & Aleksandr V. Grinenko & Izida I. Ishmuradova, 2019. "Assessing the Financial Stability of Electric Power Organizations," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 66-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-020-10037-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.