IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i1d10.1007_s13198-016-0560-x.html
   My bibliography  Save this article

An approximate hybrid approach to maintenance optimisation for a system with multistate components

Author

Listed:
  • Lei Zhang

    (Xuzhou Institute of Technology)

  • Yifan Zhou

    (Southeast University)

  • Chuanhui Huang

    (Xuzhou Institute of Technology)

Abstract

The maintenance optimisation of a system with multistate components is a research topic with practical significance. When the dependence among the components is considered, the state of the system becomes the combinations of the states of components. The commonly used Markovian analysis is then not practical for the large system state space. This paper developed an approximate approach to perform the steady-state analysis of the system. The developed method is combined with the simulation-based method to optimise the maintenance strategy of a system with multistate components. The numerical study shows that the steady-state analysis results of the developed approximate method are close to that of the simulation-based method, though the approximate method is much more efficient than the simulation-based method. More importantly, the errors introduced by the approximate approach decrease with the number of components in the system. The numerical study also shows that the hybrid method of maintenance optimisation can find a balance between the efficiency and accuracy.

Suggested Citation

  • Lei Zhang & Yifan Zhou & Chuanhui Huang, 2017. "An approximate hybrid approach to maintenance optimisation for a system with multistate components," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 189-196, March.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-016-0560-x
    DOI: 10.1007/s13198-016-0560-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0560-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0560-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Zhou & Zhiqiang Lu & Lifeng Xi, 2010. "A dynamic opportunistic preventive maintenance policy for multi-unit series systems with intermediate buffers," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 6(3), pages 276-288.
    2. Zhu, Y. & Elsayed, E.A. & Liao, H. & Chan, L.Y., 2010. "Availability optimization of systems subject to competing risk," European Journal of Operational Research, Elsevier, vol. 202(3), pages 781-788, May.
    3. Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "Optimal replacement policy for safety-related multi-component multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 87-95.
    4. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    5. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.
    6. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    7. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    8. Zhou, Yifan & Zhang, Zhisheng & Lin, Tian Ran & Ma, Lin, 2013. "Maintenance optimisation of a multi-state series–parallel system considering economic dependence and state-dependent inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 248-259.
    9. Pandey, Mayank & Zuo, Ming J. & Moghaddass, Ramin & Tiwari, M.K., 2013. "Selective maintenance for binary systems under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 42-51.
    10. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Ma, Lin, 2016. "Maintenance optimisation of a parallel-series system with stochastic and economic dependence under limited maintenance capacity," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 137-146.
    11. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    12. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    13. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmaeil Esmaeili & Hasan Karimian & Mohammad Najjartabar Bisheh, 2019. "Analyzing the productivity of maintenance systems using system dynamics modeling method," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 201-211, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Dao, Cuong D. & Zuo, Ming J., 2017. "Selective maintenance of multi-state systems with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 184-195.
    3. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Bian, Yangqing & Ma, Lin, 2015. "An effective approach to reducing strategy space for maintenance optimisation of multistate series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 40-53.
    5. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    7. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2016. "Reducing costs by clustering maintenance activities for multiple critical units," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 93-103.
    8. Zhu, Mixin & Zhou, Xiaojun, 2022. "Hypergraph-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    10. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    11. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    12. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    13. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    14. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    15. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    16. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    17. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    18. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    19. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    20. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-016-0560-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.