IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v99y2012icp87-95.html
   My bibliography  Save this article

Optimal replacement policy for safety-related multi-component multi-state systems

Author

Listed:
  • Xu, Ming
  • Chen, Tao
  • Yang, Xianhui

Abstract

This paper investigates replacement scheduling for non-repairable safety-related systems (SRS) with multiple components and states. The aim is to determine the cost-minimizing time for replacing SRS while meeting the required safety. Traditionally, such scheduling decisions are made without considering the interaction between the SRS and the production system under protection, the interaction being essential to formulate the expected cost to be minimized. In this paper, the SRS is represented by a non-homogeneous continuous time Markov model, and its state distribution is evaluated with the aid of the universal generating function. Moreover, a structure function of SRS with recursive property is developed to evaluate the state distribution efficiently. These methods form the basis to derive an explicit expression of the expected system cost per unit time, and to determine the optimal time to replace the SRS. The proposed methodology is demonstrated through an illustrative example.

Suggested Citation

  • Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "Optimal replacement policy for safety-related multi-component multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 87-95.
  • Handle: RePEc:eee:reensy:v:99:y:2012:i:c:p:87-95
    DOI: 10.1016/j.ress.2011.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    2. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    3. Ming Tan, Cher & Raghavan, Nagarajan, 2008. "A framework to practical predictive maintenance modeling for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1138-1150.
    4. Yi Ding & Anatoly Lisnianski & Ilia Frenkel & Lev Khvatskin, 2009. "Optimal corrective maintenance contract planning for aging multi‐state system," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 612-631, September.
    5. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    6. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2016. "Reducing costs by clustering maintenance activities for multiple critical units," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 93-103.
    2. Sheu, Shey-Huei & Chang, Chin-Chih & Chen, Yen-Luan & George Zhang, Zhe, 2015. "Optimal preventive maintenance and repair policies for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 78-87.
    3. Lei Zhang & Yifan Zhou & Chuanhui Huang, 2017. "An approximate hybrid approach to maintenance optimisation for a system with multistate components," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 189-196, March.
    4. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Zhuoqi Zhang & Su Wu & Binfeng Li & Seungchul Lee, 2015. "(, ) type maintenance policy for multi-component systems with failure interactions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1051-1064, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    2. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    3. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    4. Yen-Luan Chen & Chin-Chih Chang & Dwan-Fang Sheu, 2016. "Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1130-1141, April.
    5. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2018. "Conditional inspection and maintenance of a system with two interacting components," European Journal of Operational Research, Elsevier, vol. 268(2), pages 533-544.
    6. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    7. Taghipour, Sharareh & Banjevic, Dragan, 2012. "Optimal inspection of a complex system subject to periodic and opportunistic inspections and preventive replacements," European Journal of Operational Research, Elsevier, vol. 220(3), pages 649-660.
    8. Wu, Shaomin, 2012. "Assessing maintenance contracts when preventive maintenance is outsourced," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 66-72.
    9. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    10. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    11. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    12. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    13. Min-Tsai Lai, 2007. "Periodical Replacement Model for a Multi-Unit System Subject to Failure Rate Interaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(3), pages 401-411, June.
    14. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    15. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    16. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    17. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    18. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    19. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    20. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:99:y:2012:i:c:p:87-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.