IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i5d10.1007_s13198-025-02782-9.html
   My bibliography  Save this article

Advanced thermal vision techniques for enhanced fault diagnosis in electrical equipment: a review

Author

Listed:
  • A. Sasithradevi

    (Vellore Institute of Technology)

  • J. Persiya

    (Vellore Institute of Technology)

  • S. Mohamed Mansoor Roomi

    (Thiagarajar College of Engineering)

  • D. Arumuga Perumal

    (National Institute of Technology Karnataka)

  • P. Prakash

    (Anna University, MIT Campus)

  • M. Vijayalakshmi

    (Vellore Institute of Technology)

  • L. Brighty Ebenezer

    (Vellore Institute of Technology)

Abstract

Ensuring the reliability and safety of electrical equipment is essential for industrial and residential applications. Traditional fault diagnosis methods involving physical inspections are time-consuming and ineffective for early fault detection. Infrared (IR) thermography offers a non-invasive and efficient solution by identifying anomalies in temperature profiles. This review explores thermal vision-based fault diagnosis techniques, including region of interest (ROI) segmentation, image pre-processing, and fault diagnosis algorithms, with a focus on deep learning approaches. The study highlights the effectiveness of machine learning models in enhancing fault detection accuracy while identifying challenges such as environmental variations, data inconsistencies, and system integration issues. The review discusses the role of real-time applications, wireless technologies, and AI-based automation in improving fault detection. Research gaps are identified, and future directions are proposed to enhance efficiency, reliability, and industrial adoption.

Suggested Citation

  • A. Sasithradevi & J. Persiya & S. Mohamed Mansoor Roomi & D. Arumuga Perumal & P. Prakash & M. Vijayalakshmi & L. Brighty Ebenezer, 2025. "Advanced thermal vision techniques for enhanced fault diagnosis in electrical equipment: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(5), pages 1914-1932, May.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:5:d:10.1007_s13198-025-02782-9
    DOI: 10.1007/s13198-025-02782-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02782-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02782-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
    2. Neeraj Khera & Shakeb A. Khan & Obaidur Rahman, 2020. "Valve regulated lead acid battery diagnostic system based on infrared thermal imaging and fuzzy algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 614-624, June.
    3. Muhammad Rameez Javed & Zain Shabbir & Furqan Asghar & Waseem Amjad & Faisal Mahmood & Muhammad Omer Khan & Umar Siddique Virk & Aashir Waleed & Zunaib Maqsood Haider, 2022. "An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    4. Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
    5. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    6. Ju Sik Kim & Kyu Nam Choi & Sung Woo Kang, 2021. "Infrared Thermal Image-Based Sustainable Fault Detection for Electrical Facilities," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Srinivasan Alwar & Devakirubakaran Samithas & Meenakshi Sundaram Boominathan & Praveen Kumar Balachandran & Lucian Mihet-Popa, 2022. "Performance Analysis of Thermal Image Processing-Based Photovoltaic Fault Detection and PV Array Reconfiguration—A Detailed Experimentation," Energies, MDPI, vol. 15(22), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    2. Morteza Ahmadi & Masoud Abrari & Majid Ghanaatshoar & Ali Khalafi, 2024. "A novel algorithm for maximum power point tracking using computer vision (CVMPPT)," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-16, April.
    3. Dranka, Géremi Gilson & Aguiar Ferreira, Rodrigo Manoel & de Alencar, Álvaro Peixoto & Leludak, Jorge Assade & Candido, Roberto & Pazinatto, Murilo dos Santos & Silva, Lucas Massao & Zardo, Isadora Za, 2025. "A comprehensive audit framework for rural photovoltaic systems: On-site insights and key findings from Brazil," Energy, Elsevier, vol. 322(C).
    4. Dechen Yao & Hengchang Liu & Jianwei Yang & Jiao Zhang, 2021. "Implementation of a novel algorithm of wheelset and axle box concurrent fault identification based on an efficient neural network with the attention mechanism," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 729-743, March.
    5. Jae-Eun Park & Young-Keun Kim, 2025. "Semi-supervised learning for steel surface inspection using magnetic flux leakage signal," Journal of Intelligent Manufacturing, Springer, vol. 36(2), pages 1021-1031, February.
    6. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    7. Gopu Venugopal & Arun Kumar Udayakumar & Adhavan Balashanmugham & Mohamad Abou Houran & Faisal Alsaif & Rajvikram Madurai Elavarasan & Kannadasan Raju & Mohammed H. Alsharif, 2023. "Fault Identification and Classification of Asynchronous Motor Drive Using Optimization Approach with Improved Reliability," Energies, MDPI, vol. 16(6), pages 1-25, March.
    8. Li, Biao & Lei, Chen & Zhang, Wenpu & Xu, Jingru & Shuai, Yong, 2025. "A numerical simulation study of microclimate in PV power plant using coupled WRF-PVCM," Energy, Elsevier, vol. 317(C).
    9. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    10. Jiangming Jia & Chenan Zhang & Jianneng Chen & Zheng Zhu & Ming Mao, 2022. "Fault Diagnosis Analysis of Angle Grinder Based on ACD-DE and SVM Hybrid Algorithm," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    11. Xiaoyin Nie & Gang Xie, 2021. "A novel normalized recurrent neural network for fault diagnosis with noisy labels," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1271-1288, June.
    12. Chao Huang & Siqi Bu & Hiu Hung Lee & Kwong Wah Chan & Winco K. C. Yung, 2024. "Prognostics and health management for induction machines: a comprehensive review," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 937-962, March.
    13. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    14. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    15. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    16. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    17. Chen, Xu & Zhao, Chunhui & Ding, Jinliang, 2023. "Pyramid-type zero-shot learning model with multi-granularity hierarchical attributes for industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    18. Gao, Yuanqiang & Lei, Liuwei & Zhang, Meng & Zhao, Ziwen & Li, Jianling & Mahmud, Md Apel & Liu, Zhengguang & Li, Ming & Deng, Boren & Chen, Diyi, 2024. "Boosting floating photovoltaics via cooling methods and reservoir characteristics: Crafting optimal symbiosis with off-river pumped hydro storage," Energy, Elsevier, vol. 312(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:5:d:10.1007_s13198-025-02782-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.