IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-022-01851-7.html
   My bibliography  Save this article

Machine learning in supply chain: prediction of real-time e-order arrivals using ANFIS

Author

Listed:
  • Ihab K. A. Hamdan

    (University of Science and Technology Beijing (USTB))

  • Wulamu Aziguli

    (University of Science and Technology Beijing (USTB))

  • Dezheng Zhang

    (University of Science and Technology Beijing (USTB))

  • Eli Sumarliah

    (Al-Ihya Islamic University (UNISA))

Abstract

Accurate demand forecasting throughout the multi-channel supply chain (SC) enhances the managers’ decision-making capability in operational, tactical, and strategic aspects. However, the problem is that earlier publications about the real-time prediction of e-commerce order arrivals in the SC show some inadequacies. According to a systematic review from Tsolaki (ICT Express, 2022. https://doi.org/10.1016/j.icte.2022.02.001 ) who integrate logistics and machine learning (ML) methods in the past ten years, there are very few studies that focus on arrival time prediction like this study does, and none of them uses an adaptive neuro-fuzzy inference system (ANFIS) framework to predict e-order arrivals. Besides, (Policarpo in Comput Sci Rev 41:100414, 2021) review the existing publications that integrate e-commerce and ML techniques in the past five years; they reveal that previous studies pay heavier attentions to e-commerce initiative goals such as purchase and repurchase predictions, and none of them focuses on predicting e-order arrivals like this study does. Previous scholars investigate SC orders and prediction issues in a broader space, while this study attempts to predict hour-to-hour, actual-time order arrivals. Thus, this study presents a new data-empowered forecasting method to fill these research gaps. The motivation of this study is to build a method for predicting real-time e-orders arrivals in distribution hubs, enabling third-party logistics providers to handle the hourly-based e-order arrival rates more efficiently. This study tries to find the solution for the problem by developing a new ML forecasting method by integrating time-series data features and ANFIS, which has been proven to significantly reduce the issues’ computational complexity. This study creates a four-phase operation model to enable managers to adopt the suggested framework, and develops a systematized forecasting model to cross-confirm the framework’s outcomes. This study employs a descriptive case study and shows a satisfactory degree of precision of the suggested ML method in predicting the actual e-order arrivals in three e-retailers at three-hour cycle times. The findings reveal that the real-time forecasting is significant to boost the values of e-order arrivals in every day business operations. The novelty of this study lies on its novel contribution and purpose to build a method for predicting real-time e-orders arrivals in distribution hubs, enabling third-party logistics providers to handle the hourly-based e-order arrival rates more efficiently; and to develop a new ML forecasting method by integrating ANFIS and time-series data features.

Suggested Citation

  • Ihab K. A. Hamdan & Wulamu Aziguli & Dezheng Zhang & Eli Sumarliah, 2023. "Machine learning in supply chain: prediction of real-time e-order arrivals using ANFIS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 549-568, March.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-022-01851-7
    DOI: 10.1007/s13198-022-01851-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01851-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01851-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdullah H. Alenezy & Mohd Tahir Ismail & S. Al Wadi & Muhammad Tahir & Nawaf N. Hamadneh & Jamil J. Jaber & Waqar A. Khan & Basil K. Papadopoulos, 2021. "Forecasting Stock Market Volatility Using Hybrid of Adaptive Network of Fuzzy Inference System and Wavelet Functions," Journal of Mathematics, Hindawi, vol. 2021, pages 1-10, August.
    2. MacCarthy, Bart L. & Zhang, Lina & Muyldermans, Luc, 2019. "Best Performance Frontiers for Buy-Online-Pickup-in-Store order fulfilment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 251-264.
    3. Mohammad Najjartabar Bisheh & G. Reza Nasiri & Esmaeil Esmaeili & Hamid Davoudpour & Shing I. Chang, 2022. "A new supply chain distribution network design for two classes of customers using transfer recurrent neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2604-2618, October.
    4. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2018. "The Dynamic Dispatch Waves Problem for same-day delivery," European Journal of Operational Research, Elsevier, vol. 271(2), pages 519-534.
    5. Ihab K.A. Hamdan & Eli Sumarliah & Fauziyah Fauziyah, 2021. "A machine learning method to predict the technology adoption of blockchain in Palestinian firms," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 17(4), pages 1008-1029, December.
    6. Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.
    7. Yaoting Chen & Huanting Chen, 2022. "Analysis and modeling of supply chain management of fresh products based on genetic algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 405-414, March.
    8. Zhi Li & Yuemeng Ge & Jieying Guo & Mengyao Chen & Junwei Wang, 2022. "Security threat model under internet of things using deep learning and edge analysis of cyberspace governance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1164-1176, December.
    9. Mohsen Sadegh Amalnick & Naser Habibifar & Mahdi Hamid & Mahdi Bastan, 2020. "An intelligent algorithm for final product demand forecasting in pharmaceutical units," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 481-493, April.
    10. Sachin Kamble & Angappa Gunasekaran & Vikas Kumar & Amine Belhadi & Cyril Foropon, 2021. "A machine learning based approach for predicting blockchain adoption in supply chain," Post-Print hal-03539287, HAL.
    11. Rohit Singh & Santosh Singh Rathore, 2022. "Linear and non-linear bayesian regression methods for software fault prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1864-1884, August.
    12. Li, Shuqin & Jia, Shuai, 2019. "A Benders decomposition algorithm for the order fulfilment problem of an e-tailer with a self-owned logistics system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 463-480.
    13. Amitabh Bhargava & Deepshikha Bhargava & P. Naveen Kumar & Guna Sekhar Sajja & Samrat Ray, 2022. "Industrial IoT and AI implementation in vehicular logistics and supply chain management for vehicle mediated transportation systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 673-680, March.
    14. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Papers 2104.14286, arXiv.org.
    15. Asmat Ara Shaikh & K. Santhana Lakshmi & Korakod Tongkachok & Joel Alanya-Beltran & Edwin Ramirez-Asis & Julian Perez-Falcon, 2022. "Empirical analysis in analysing the major factors of machine learning in enhancing the e-business through structural equation modelling (SEM) approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 681-689, March.
    16. Dapei Jiang & Xiangyong Li, 2021. "Order fulfilment problem with time windows and synchronisation arising in the online retailing," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1187-1215, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
    2. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    3. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    4. Shen, Yinhai & Zhang, Qing & Zhang, Zhichao & Ma, Xinyu, 2022. "Omnichannel retailing return operations with consumer disappointment aversion," Operations Research Perspectives, Elsevier, vol. 9(C).
    5. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Zied Babai, M., 2023. "Network inventory deployment for responsive fulfillment," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Dehghani, Milad & William Kennedy, Ryan & Mashatan, Atefeh & Rese, Alexandra & Karavidas, Dionysios, 2022. "High interest, low adoption. A mixed-method investigation into the factors influencing organisational adoption of blockchain technology," Journal of Business Research, Elsevier, vol. 149(C), pages 393-411.
    7. Mohammad Moshref-Javadi & Kristof P. Cauwenberghe & Brent A. McCunney & Ahmad Hemmati, 2023. "Enabling same-day delivery using a drone resupply model with transshipment points," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.
    8. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    9. Jin, Delong & Caliskan-Demirag, Ozgun & Chen, Frank (Youhua) & Huang, Min, 2020. "Omnichannel retailers’ return policy strategies in the presence of competition," International Journal of Production Economics, Elsevier, vol. 225(C).
    10. Zhang, Xi & Cheng, Yihang & Chen, Aoshuang & Lytras, Miltiadis & de Pablos, Patricia Ordóñez & Zhang, Renyu, 2022. "How rumors diffuse in the infodemic: Evidence from the healthy online social change in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    12. Vyt, Dany & Jara, Magali & Mevel, Olivier & Morvan, Thierry & Morvan, Nélida, 2022. "The impact of convenience in a click and collect retail setting: A consumer-based approach," International Journal of Production Economics, Elsevier, vol. 248(C).
    13. Lin, Xiaogang & Zhou, Yong-Wu & Hou, Rui, 2021. "Impact of a “Buy-online-and-pickup-in-store” Channel on Price and Quality Decisions in a Supply Chain," European Journal of Operational Research, Elsevier, vol. 294(3), pages 922-935.
    14. Zhang, Yumeng & Hezarkhani, Behzad, 2021. "Competition in dual-channel supply chains: The manufacturers' channel selection," European Journal of Operational Research, Elsevier, vol. 291(1), pages 244-262.
    15. Yini Chen & Ting Chi, 2021. "How Does Channel Integration Affect Consumers’ Selection of Omni-Channel Shopping Methods? An Empirical Study of U.S. Consumers," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    16. Jinrong Liu & Qi Xu, 2020. "Joint Decision on Pricing and Ordering for Omnichannel BOPS Retailers: Considering Online Returns," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    17. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    18. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    19. Raman Pall & Yvan Gauthier & Sofia Auer & Walid Mowaswes, 2023. "Predicting drug shortages using pharmacy data and machine learning," Health Care Management Science, Springer, vol. 26(3), pages 395-411, September.
    20. Rashi Saxena & E. Gayathri & Lalitha Surya Kumari, 2023. "Semantic analysis of blockchain intelligence with proposed agenda for future issues," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 34-54, March.

    More about this item

    Keywords

    Machine learning; E-commerce; Supply chain management; Third-party logistics; Real-time demand prediction;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-022-01851-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.